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5 ABSTRACT

I
This interim report covers research performed from

October 1, 1979 through September 30, 1980 on electron-
--te-axtcited plasma turbulence and electromagnetic emission,

on propagation of intense electromagnetic radiation in the
earth's ionosphere, on plasma diagnostics, and on experiments
to accelerate ions and excite low frequency turbulence in
the laboratory.
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I. Introduction'

This interim report describes work performed under

AFOSR grant #80-00 during the period October 1, 1979 to

September 30, 1980. The subject of research has been the

theory of qPlasma Wave Turbulence and Particle Heating

Caused by Electron Beams, Radiation, and Pinches.* The

period covered is the third stage of a comprehensive re-

search program concerned with the nonlinear behavior of

plasmas subjected to intensely energetic sources.

One of the significant developments in plasma physics

over the past decade has been the theoretical and experimental

progress made in our understanding of nonlinear plasma wave

evolution in response to external sources: A wide variety

of radiation sources such as lasers, microwaves, and

radar, and of electron beam sources, such as solar electron

streams and laboratory beams can excite plasma wave

instabilities in target plasmas. The waves saturate into a

10 4
turbulent spectrum, and may heat the plasma, accelerate

plasma particles, and/or emit their own radiation. Such

processes have been linked to inertial liand magnetic 
2

controlled thermonuclear fusion schemes, radar communications

in the earth's ionosphere, and Type III solar radio bursts.

The phenomena also bear heavily on certain fundamental

questions of plasma turbulence, such as wave collapse in

phase space, electric-field envelope-soliton evolution,
1 3'1 4

": and the nature of the so-called $strong turbulence. 3  
-
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i Our research on pinches was completed over a year ago.

The present report describes progress which has been made

in the following areas:

1. Electron-beam excited plasma turbulence and

electromagnetic emission;

2. Nonlinear propagation of intense microwaves in the

ionosphere;

3. Radiation diagnostics of plasma turbulence;

4. Experiments to accelerate ions and excite low

frequency turbulence in the laboratory.

II. Summary of Accomplishments

1. Beam-Plasma Interaction and Electromagnetic Emission

Our earlier theoretical work concerning the effects of

an electron beam on Langmuir waves and electromnagnetic

emission has now been published (Appendices A and B). An

electron beam injects energy into a range of Langmuir

modes (the injection range). When th: intensity becomes

high enough, wave-wave interactions transfer waves into

an inertial range, and, eventually, a dissipative range in

k-space. In the inertial range, the dominant effect appears

to be spatial self-focusing of Langmuir wavepackets, leading

to strong turbulence. The theory developed in Appendices

A and B develops and confirms a picture in which electromagnetic

emission at twice the plasma frequency emanates from the

collapsing Langmuir wavepackets. The nature and intensity
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of the emission depend on the details of the Langmuir wave

turbulence. In the work of Appendix A the emission is

assumed to come from the late (supersonic) stage of collapse,

whereas in the later work of Appendix B, a more pronounced

early (subsonic) evolution was found.

In the new work of Appendix C we find substantial

electromagnetic emission in the early stage, an unexpected

result. A three-dimensional model for collapse is proposed

in which the electric field of the wavepacket has a spheri-

cally symmetric modulus and an asymmetric phase. The appropriate

equations are solved numerically. Copious emission in the

early stage comes about from Langmuir wave phase changes

which enable two plasma waves to coalesce into an electromag-

netic wave, with the proper kinematics (momentum and energy

conservation). This paper has been accepted for publication

in Physics of Fluids.

Appendices D and E represent new work concerning the

effect of a background magnetic field on Langmuir collapse.

Such a field usually accompanies and guides the electron

beam. We have considered the case of a weak magnetic field

(electron cyclotron frequency much less than electron plasma

frequency). Even for such weak fields, important effects

can occur. The transfer of energy out of the injection

regime is slowed down, and the ions begin to play a more

prominent role by taking up momentum. In addition, the

real-space wavepackets are shaped into pancakes pierced by
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magnetic field lines. An analytic theory for these effects

is derived in Appendix D, in the form of a magnetic virial

theorem. The behavior we have fodno will undoubtedly

affect emission, but this has not yet been studied. The

paper in Appendix D has been accepted for publication in

Physics of Fluids. Appendix E is the Ph.D. thesis of

James C. Weatherall who has been partially supported

under this grant for the past few years. This thesis

contains a comprehensive study of the effects of a magnetic

field on collapse, and applications to the problem of

Type III solar radio bursts.

Appendix F contains the results of research performed

in collaboration with Prof. John Dawson's numerical group

at U.C.L.A. We have carried out particle-in-cell simulations

in two dimensions, for two particle species with a mass

ratio of 5. The initial condition was a Gaussian Langmuir

wavepacket of intensity and shape determined by the (prior)

evolution of a beam instability. The subsequent evolution

of this (undriven) wavepacket shows a recurrent behavior

in which it breaks up and reconstitutes repeatedly over

several cycles. This behavior seems consistent with

15recent theoretical work of Thyagaraja of Culham Laboratories,

who has shown that packets which do not collapse, must

recur. It may have general implications for turbulence

and for electromagnetic emission. This paper has been

accepted for publication in Physics of Fluids.
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Finally, we have performed research which is presently

being organized for publication. Dr. G. Benford and his

co-workers at the University of California at Irvine have

just published experimental results1 6 in which a relativistic

electron beam of 50 kA current, incident on an unmagnetized

laboratory plasma can produce up to megawatts of radiated

power in the 20-100 Ghz frequency regime (corresponding

to the local plasma frequency). The theoretical explanation1 6

involves Langmuir turbulence of the type we are studying,

but driven by more intense electron beams. Here the

wavepackets were assumed to break up due to modulational

instabilitiy, rather than the self-focus directly. Recently,

we have used our two-dimensional numerical code for

simulating this situation, and have found the hypothesized

break-up to occur as expected.

2. Propagation of Intense Microwaves

This research has been motivated in part by the
17

recent proposal to orbit a geostationary satellite

which would collect solar radiation and transmit energy

to an earth-bound station via microwave radiation at 2.45

Ghz. Projected local intensities in the F-region of the

2ionosphere would be about 25 mW/cm 2 . Our work on the

propagation of this and longer wavenlength radiation

through the ionosphere is described in the paper in Appendix

G, which has been accepted for publication in the Journal

of Geophysical Research. We predict thermal self-focusing
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instabilities to be excited in the E and F regions by such

radiation. These instabilities have been observed1 8 experi-

mentally, recently, using a 10 Mhz ground-based radar, at

times when the ionosphere peak plasma frequency is 7 Mhz, so

there is no reflection. Our principal prediction for micro-

waves is that density striations as large at 10%, and

intensity striations of up to 100% may be excited, with scale

lengths of 100 meters.

Thermal self-focusing appears to be generic, and would

affect the propagation of intense microwaves through most

plasmas.

3. Radiation Diagnostics

Our collaboration with Dr. N. Peacock of Culham, on the

development of the "Raman Induced Kerr Effect" (RIKE) as a

radiation diagnostic of plasma collective behavior continues.

As Appendix H, we have included a research memo to Dr. Peacock,

in which the effects of density gradients are studied. It

will be recalled that RIKE is a coherent process in which

collective response of the plasma is evoked by the pondero-

motive beat force between two radiation sources (e.g., lasers)

and then detected by scatter off one of them. We have studied

a parabolic density profile, and found under which conditions

the spectral width of the probed collective mode is determined

by intrinsic line width, and when it is determined by the

profile gradient (see Table 1, pg. 27 of Appendix H). This

work is continuing.
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4. Experimental Program

In the current contract period an experimental program

was initiated. The proposed work for this year consisted

of (i) the construction and development oZ a plasma device

for obtaining long-lived wave-driven ion beam segments,

and (ii) the initiation of a study of cross-field ion

acceleration by waves in magnetized plasmas. Both tasks

have been carried out on schedule. It should be noted

that all costs for equipment, supplies, as well as salary

for the senior (faculty) experimentalist, are not borne

by AFOSR, which contributes only the salary of one Graduate

Research Assistant towards the cost of the experimental

program.

The goal of the program is to develop and enhance

the efficiency of processes through which large-amplitude

waves in plasmas are able to accelerate ions. The underlying

principle was demonstrated in 1973: it was shown that

ion-acoustic waves generated substantial internal ion

beam segments in the stationary state. In contrast with

the conventional pulsed beam generation techniques, this

is a steady-state method with about 50% duty cycle, i.e.,

orders of magnitude more effective, although at present

limited to low ion energies.

During this initial period we have constructed two

types of facilities designed to overcome the main limitations

on beam lifetime which were encountered in the original
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experiment. These are: charge exchange and turbulence.

Specifically, in the presence of a background gas, ions

will charge-exchange with neutrals and effectively be

removed from the beam. At the normal background pressures

of 10-4 Torr in Argon, the charge-exchange length was of

order 20 cm, so that at the typical ion speed of order

106 cm sec 1 a lifetime of only 20 sec could be expected.

Secondly, the ion-beam segments were found to excite

unstable off-axis ion acoustic waves in a broad spectrum.

These waves in turn scattered ions out of the beam. We

have assembled two sets of apparatus, designed to overcome

each of these limitations, and enable further studies of

the basic process.

A DP-type plasma device was constructed, in which

charge exchange is reduced to a minimum through the use

of confining magnets. DP plasmas are large-volume gas

discharges in which primary electrons, generated by hot

metallic filaments, are electrically accelerated and

ionize a background gas through collisions. Conventionally,

with cross sections in the range 101 6 to 10-18 cm2 and

gas densities of order 1014cm-3 (filling pressures of 1 m

Torr), the primary electron mean free path is of order

102 to 103 cm. It is therefore lost to the walls of

laboratory-size machines after undergoing less than one

ionizing collision on the average. By lining the walls

of the machine with strong permanent magnets, say of 1 K

Gauss, these primaries can be turned around without energy
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loss and forced to traverse the background gas many times,

increasing the ionization efficiency correspondingly.

Note that for 100 eV, the electron gyro-radius in a 1 KG

-1
field is less than 10 cm, i.e., the trajectory bending

is very effective.

With the aid of Prof. N. Hershkowitz of the University

of Iowa, a foremost expert in devices of this type, who

is spending the academic year 1980-81 with our group, we

have assembled and tested such a machine. We are currently

able to operate it at background pressures of 10- 5 Torr

in Argon: at this pressure, the charge-exchange length

is about 500 cm, longer than the device. That is, the

ion beam life spans its motion across the machine. Large-

amplitude waves have been launched, and experiments are

proceeding on measurements of ion beam segments generated

by these waves. The device (Figure 1) is fully instrumented

with probes for measuring details of the wave structure.

An ion energy analyzer probe for measuring the ion beam

structure is being designed.

To decrease the limitation on ion beam lifetime due

to turbulence, a novel scheme has been assembled and is

being tested. It is based on the observation that, in

unmagnetized plasmas, an ion beam can destabilize a broad

spectrum of ion-acoustic waves, due to the fact that

their dispersion relation is nearly straight. That is,

the interaction condition that beam speed and wave phase

speed be alike can be satisfied by many frequencies.

I!
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Conversely, in magnetized plasmas, only a narrow range of

frequencies of waves is allowed. Thus the unstable spectrum

is narrower, and can be expected to have a correspondingly

limited effect on the ion beam. To test this effect, a

magnetized plasma device has been assembled. It consists

of a plasma column generated by microwave breakdown of a

noble gas inside a solenoidal magnetic field of 1 K Gauss

or higher. Ion-acoustic waves are launched by AC voltage

applied to metal grids spanning the column. Probe instrumen-

tation is in place, and the level of background noise in

the machine has been reduced to the point where tests of

the principle can be conducted. The assembly is shown in

Figure 2.

The study of cross-field ion acceleration in a magnetized

plasma was conducted using the Q-machine faciility at the

University of Californi4, Irvine. In this instrument,

similar in concept to the device described above, we de-

stabilized ion waves propagating normally to the magnetic

field (the Electrostatic Ion Cyclotron mode). These

waves carry a strong electric field component in the

direction of propagation, which pushes ions ahead of it

and distorts the ion velocity distribution function corres-

pondingly. Figure 3 shows the resulting perturbed velocity

distribution function, containing an accelerated ion beam

component with energy of about 1 eV, generated by waves

with peak-to-peak potential variations of 1 V magnitude.

The process is being studied experimentally and theoretically;
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we propose to conduct similar studies in our machine as

soon as the scheduled tests of turbulence mentioned above

are completed. The principal advantage of our device

lies in the fact that the Q-machine, although quieter, is

limited to operation using alkali-metal plasmas or similar

substances, in which the electron/ion temperature ratio

is of order unity, whereas using noble gases we have

temperature ratios of order 10 to 102. Since the amplitude

of driver ion waves is a strong function increasing with

this ratio, we can launch much more intense waves, and

correspondingly generate stronger and denser ion beams,

than are possible in Q-machines.

In summary, during the contract period we have con-

structed our basic instrumentation, developed a new concept

which may increase the efficiency of the basic process,

and demonstrated for the first time the cross-field acceler-

ation of ions in magnetized plasmas.

LO1
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Radiation from a strongly turbulent plasma: Application to
electron beam-excited solar emissions

Martin V. Goldman
Department of 4stro-Geophysics. University of Colorado. Boulder Colorado 80309

I George F. Reiter

Physics Department. Brookhaven National Laboratory. Upton. New York 11973

3 Dwight R. Nicholson
Department of Physics and Astronomy. University of Iowa. lou, City. Iowa 52242
(Received 4 May 1979; accepted 3 October 1979)

The emission of radiation at the plasma frequency and at twice the plasma frequency from beam-excited
strong Langxuir turbulence, for the case of low-density high-velocity warm beams. is considered. Under
these conditions. Langmuir wave packets undergo (direct) collapse in a time short compared with one e
folding of a beam mode. The wave packet energy density threshold for collapse depends only on the

beam temperature and velocity, not on the beam density. Upper and lower limits on the solume
emissivity for harmonic emission from these collapsing wave packets are found. Within most of this
range, the emissivity is large enough to account for observations of second harmonic radiation during
type III solar radio wave bursts. The radiation at the fundamental is many orders of magnitude larger
than predicted by weak turbulence theory.

I. INTRODUCTION We believe that previous attempts" at calculating this

In this paper we treat the emission of radiation from emission have been inconsistent (see Sec. VI).

collapsing Langmuir wave packets excited by an elec- One result of increasingly sophisticated and far-
tron beam of high velocity and low density. Emission reaching experiments in space has been the establish-
rates at the plasma frequency uwp and the first harmonic ment of a firmer foundation for the basic physics of
2w, are calculated for a nonmagnetic plasma with pa- type III bursts. There is now general agreement that
rameters appropriate to the solar wind plasma during an electron beam is launched during a flare event on the
so-called type III solar radio wave emission. The pa- sun, and that as this bean) propagates out in the solar
rameter space for Langmuir collapse and subsequent wind along a magnetic field Line, it excites Langmuir
radiation is very rich, and many distinctly different waves, which in turn produce radiation at tle local plas-
phenomena can occur under different conditions. We ma frequency and at its first harmonic. As the beam
believe the work of this paper deals with one of the propogates from the sun to the earth and beyond, it en-
simplest cases (possessing significant measured data), counters local plasma frequencies which progressively
and probably has at least qualitative significance to decrease by more than four orders of magnitude. The

other regimes of strong Langmuir turbulence. measured radiation shows this characteristic drop in

The subject of type IlI solar radio-wave emission frequency as a function of time. Spacecraft experiments

provides a unique arena for the interaction of modern on board satellites have detected the electron beam,

nonlinear plasma physics with space physics. In this Langtuir wave, and tile emitted radiation, although the

paper we shall show that conditions are commonly found data on Langmuir waves have been rare, and difficult

in the solar wind, during type III bursts, when highly to obtain. A sketch of tle events associated with a type
nonlinear evolution of electron plasma waves (Langmuir III burst is depicted is Fig. 1. Measurements have beet

waves) can occur. This evolution can take the form of made from the earth-orbiting satellites (Ref. 5 and 6),

spatial "collapse"' of Langnsuir wave packets of ii- IMP 6 and 8, and from the solar-orbiting satellites,'

tially very low energy density. The collapse is essen- HELIOS I and 2.

tially a nonlinear index-of-refraction effect, in witch Our concern in this paper is mainly with the emis-
Langmuir waves are confined by the ponderomotive sivity measurements obtained by Gurnett and Andersot'
force, and intensify and steepen in an unstable manner at twice the local plasma frequency near HELIOS 1
which can only be stopped by eventual dissipation of en- (near 0.5 AU). It the strongest burst observed by tlsem
ergy into resonant electrons. A plasma in this condi- (31 March 1976, 18 : 10 U.T.), a radi:ktion intensity of
tion is said to be "strongly turbulent." 10 - l7 W m - Hz was measured. This leads to a volutme

The emission of electromagnetic waves from the col- emissivity (assuming isotropic emission) of 7

lapsing Langmuir wave packets is estimated using vari- 7(2 ,,) - 1.6 • 10 -  ergs cm- 'sec st -' )
ous dynamical and statistical models. Most of these

lead to favorable comparisons with recent observations Langmuir waves were observed simultaneously, with an
by Gurnett and Anderson' at 'A U (astronomical units), energy density (in units of the background particle en-
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wp M v- N lluil Wiv:,% and has bIn dtIle-li in 1,:i'
(h\ Iy tit ld~iC:11(]d .1:11 lliCS) :IIA 011 ( 11 Ih.

LOWER N

DENSITY \ IMP 6, 8

(Wp - 20 kHz) 0

EARTH

ergy density, nk 'sT) of ets are present per unit volume. Models for this -den-
sity of collapsing packets" are developed in Sec. V,

(ISi') '4nkBT- 1.4x10- . (2) based on energy conservation in the steady-state

These Langmuir waves generally occurred as "spikes" power flow associated with Langmuir waves. The vol-
with characteristic dimensions of 25-100 km or larger. ume emissivity is calculated and compared with the
(Structures of smaller size, such as the collapsing measured value.
Langmuir wave packets discussed in this paper, would In Sec. VI we present detailed criticisms of other
be too small to have been detected by the HELIOS space-crft.) The background plasma parameters associated work on strong turbulence emissiv'ity. In the Appendix

we explain why the collapsing wave packets are mainly
with these measurements were Pi, = 42 electrons per longitudinal.
cm 3 and kTe-10 eV (Te=I.2x0"K). We shall use
these parameters in our calculations. II. EXCITATION OF LANGMUIR WAVES BY THE BEAM

The plan of this paper will be as follows: We shall assume a simple model of the electron beam

In Sec. II we shall treat the excitation of Langmuir and the background plasma. The beam will be assumed
waves by a typical electron beam associated with type to be stationary, spatially homogeneous, and having a
III bursts and show how the beam determines the shape Gaussian distribution in velocity space centered around
and spatial density of Langmuir wave packets up to the v, I, with an isotropic half-width, I? ,t h

time at which their energy density begins to exceed the lbexp-(V--Vb)/2AlI . 1 (3)
collapse threshold. f5(') = (2r7A2v-)

3 /2  
' /' 2' AI (3"

Section III is devoted to the subsequent collapse, and
descibe ho a teay sate s st u inwhih ~The bea'm density will be taken to be no greater thande sc rib e s how a ste a d y state is set u p in w hic h t h e1 - t m s t le b -k r u d e e c r n d n i y i

beam acts as a source of energy density, and resonant
wave-particle interaction (Landau damping) acts as a a 10-'. (4)
dissipative sink. Conditions for stabilizing the beam The background plasma is assumed to be a Maxwellianagainst quasi-linear plateau formation are also dis- with density n,, = 42, and temperature 10 eV, as in the

cussed here. The similarity solutions for collapsing experienty t = oG and andesn th

wave packets in the adiabatic and supersonic regimes experiments at :AU of Gurnett and Anderson.' Tis
are presented. implies that n, 4.2 x 10 - ' cm - ' , and r,, z 9 K 10 - ',

where c, = (kB T, ';)1 -' 2 is the electron thermal velocity

In Sec. IV (and in the Appendix) we discuss the gener- associated with one dcgree of freedom.
al problem of emission of electromagnetic waves by We note that the assumption of a time-stationary beam
the nonlinear currents associated with Langmuir waves.
It is shown that harmonic emission cannot be of lower is an approximation. Since the beam is injected with

order than quadrupole. Emission cannot occur from velocity dispersion at the site of a flare, the faster

the beam-driven Langmuir waves without some form of electrons will arrive downstream before the slower

nonlinear saturating wave interactions becaus( of ki- ones so that v, (and possibly A%) are functions of time.

nematical constraints. We estimate the harmonic and The effects of this on the excited Langmuir waves were

fundamental emission that occurs in the later stages of studied by Magelssen and Smith, who took ito account

collapse by using similarity solutions and constants of re-absorption of Langmuir waves by the beam, and de-

the motion to approximate the Fourier transform of the termined that the beam could propagate over large dis-

emitting currents. tances. A relatively low level of Langmuir waves re-
sulted (Ww 10-'). However, the time scale for such ef-

Calculation of the volume emissivity requires that we fects is long compared with a collapse time, and we
know (on the average) how many collapsing wave pack- have ignored such space-time variations of the beam.
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In this paper we show that Langmuir energy densities to be at least 80 earth radii. This justifies the neglect
on the order of Wz 10 are unstable against spatial of the finite spatial width of the beam in our treatment.
collapse. These energy densities are a small fraction
of the beam energy unless n5 o is much smaller than Tie phases of the Fourier modes in the bean-uns,:ble

10 "'. This justifies the neglect of the change in the Langmuir wave packet will be random, since wc nave
assumed it is homogeneous white noise being amplified.beam due to homogeneous quasi-linear beam relaxa- Ti ed oamliueo aepcesi elsae

tion. Since the process of spatial collapse takes energy This leads to a multitude of wave packets in real space,

out of resonance with the beam, we can also view col- with mean spatial half-widths of A % (Ak )-' and AA

lapse as a potential mechanism for stabilizing the beam z (Ak )-', as depicted in Fig. 2. For the parameters
considered here, a typical real-space packet measures

against plateau formation. about 3 by 10 km. This would be too small a packet to
The beam distribution of Eq. (3) causes the growth of be measured by current spacecraft techniques 3 at _A U.

a k-space wave packet of Langmuir waves, centered We shall assume the mean distance between wave pack-

around the wave vector ko, which satisfies the Cerenkov ets to be on the order of this mean size.
condition, This will constitute our picture of Langmuir waves

kO,= wpF, b (5a) while they are subject to beam growth, but before they
have reached the critical intensity for nonlinear wave-

or wave interactions. We should remark, in passing, that
k0 ,'k= ve/ tb= 9 x0 -3 . (5b) the beam contribution to the dispersion relation of the

The resulting growth rate of resonant Langmuir waves Langmuir waves is negligible because n, n10 [n-
equality (4) j.

i k; Z ek (Z
2

) Ill. LANGMUIRWAVE COLLAPSE
_(_7 ) n 1kApk Zexp1 + k2, (6) The electron beam creates the configuration of real-

where space Langmuir wave packets just described. The pack-
ets grow in time. When one of these packets is suffi-

Z- (',/A,)(k1- ko)(k) - . (7) ciently intense, it can collapse "directly," 2 in a time
which is fast compared with one beam growth e-foldingWe note that the background magnetic field has been tieThspossasecnlbendcuedttime. This process has recently been discussed at

neglected in Eq. (6). This is completely justified, since
the ratio of electron cyclotron frequency to plasma fre-

quency is small (see Sec. VI). A. Predictions of the virial theorem for initially

The fastest growing Langmuir waves have k,= 0(ko), adiabatic collapse
and k, = 0. We will determine the k-space shape of the In brief, the threshold for collapse of a wave packet
Langmuir wave packet determined by Eq. (6). At a gi- depends simply on its k-space widths (in the limit when
ven time 1, the wave energy system will have been am- its group velocity is less than sound speed, and assum-
plified by the factor A(k) a exp[2-y(k)t ]. We determine ing that its energy density is sufficiently less than the

the half-widths by the condition A(k o + Ak) =A(ko)/2. The mass ratio). The critical energy density for an aniso-
parallel and perpendicular half-widths are therefore tropic wave packet is a slight generalization of the re-
obtained from the following equation: sult in Ref. 2,

s k( ± Ak),/y B (k.) = 1 - ln2/lnA (ko). (8)

Choosing A .e) = 2 x 10' (10 e foldings) yields,

ak =( )i'1 2 1 (9a) BEAM MODES

ak, = ln21/2 at,! I9b avkko lA. ,. 4 o"(9b)
k,, \nA 1b 4 7 T

We note that the perpendicular half-width Ak,/k,, is de- to
termined entirely from the factor k,/(k' + k'L) in Eq. (6), *o

while the parallel half-width Ak,,/k 0 is determined en-
tirely from the factor Zexp(-Z 2 /2). The shape of the t NON-RESONA T >

a nMODES t, 0j
k-space wave packet is therefore elongated in the per- COLLAPSE
pendicular directions, producing a kind of pancake, as

shown in the two-dimensional projection in Fig. 2. 2 2

This model assumes the amplification of spatially
homogeneous noise, so that the convective nature of the FIG. 2. Contours of constant Langmuir wave energy density

beam instability is irrelevant. We also note, in this in real and Fourier space, at an initial time t0 , and a later
time 11 (after some real-space collapse has occurred). The

connection, that a typical excursion distance of a Lang- initial Fourier-space wave packet consists of beam-unstable
muir wave packet in the perpendicular direction (during (resonant) modes, with random phases, centered about the

a collapse time) is I kin, whereas the perpendicular wave vector k 0 : 11 /.. forming a packet of size Ak, hy 4A,.

spatial width of the electron beam has been measured' In real space, this corresponds to packets of size 3 by It ki.
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W,-=24{[(A,'%,)2 + (Ak,) 2 Il/ }, (10) phase space for Langmuir wave packets. Packets above
provided that the dashed line are subject to collapse, according to

Eq. (10). Owing to the instability of the beam, a wave

W<< 1 6 mn/M, (Ila) packet executes a trajectory in the phase space, as il-

and lustrated in Fig. 3. Packets of a size set by the beam
parameters [Eq. (9)1 grow until they exceed threshold.

k2/k << (2 '9)(mi1), (I lb) They then quickly collapse to smaller size and larger
(1), / W. This collapse becomes supersonic when the adia-

where IV is the energy density defined in Eq. batic conditions (11) are violated. We assume that the
is the electron-to-ion mass ratio, ak is the k-space collapse continues until Ax becomes on the order of
half-width of the packet, and kD is the Debye wavenumber. about 5 Debye lengths, and that the collapse then ceases
The inequalities (11) are the conditions for adiabatic wit powe leron dt e olae tce

ions. In the later stages of collapse the ion inertia be- with power flowing into electrons due to wave particle

comes important, and the inequalities (11) are strongly interaction. The power balance this implies will be
( usti- treated explicitly in Sec. V. We note from Fig. 3 that

violated; however, the threshold condition (10) is thjakeuiederaesbtwirdr-fmantc
fiably adiabatic. From Eqs. (5) and (9) we have the packet size decreases by two orders of magnetic,

and its energy density increases from 10-' at threshold,
Ak 1/k =2.2 x 10 - ", Ak/kD = 7.5 x 10-'. (12) to order unity when Landau damping can occur.

The larger of these dominates in Eq. (10), and In the adiabatic regime, above threshold, the Lang-
muir wave evolution should be accurately described' byWh -Z 10 - a . (13)
the cubic nonlinear Schr~dinger equation

The adiabatic condition (11a) is then seen to be well- ia +& 0 (16)
satisfied, but (lib) is only marginally satisfied. Never-
theless, numerical calculations9 indicate the validity of here, t = , P=rk / ,T, and 9-is the dimensionless
this description under the present circumstances, envelope of the plasma oscillations. The total real

Langmuir wave field EL is given in physical units inNext, we note that the energy WVrh represents a small terms of the envelope 3 as

fraction of the energy density in the electron beam,
when nbin/e 10". Under these circumstances EL =Re[ (32,Tn)W1*2(0e + 0,)"/ exp(-iwl) I. (17)

=il b~b /ne e 1 0 ; (14) In the early adiabatic stages of collapse, the evolution

of a given initial wave packet can be described by virial
hence, the wave-wave interactions inherent in collapse theorem arguments. In addition to the threshold IV,
occur before the wave-particle interactions governing
homogeneous beam plateau formation. Since the wave 2

energy of resonant modes never becomes comparable to PACKE7Tr

the beam energy, the collapse process would seem to I
suppress quasi-linear plateau formation! LANDAU I

We also note that Wth is independent of the beam den- I'I

sity nb, whereas Wb decreases with 1ib. Hence, for
n/ne significantly smaller than 10", it is likely that I VERY NONLINEAR

collapse will be prohibited because not enough energy /
is available in the beam to elevate the waves to thres-
hold energy. Measurements indicate that 10- is prob- C SE
ably an upper limit for type Il bursts. / SUPERSONIC

These facts also help guarantee that the collapse time 16 M/M AIBT

is shorter than a beam growth time. The collapse time
predicted from virial theorem arguments 2 is

wpt,=4[4-T(Ak/k)(W- Wth)I (15) 0 DIRECT COLLAPSE
THRESHOLD'

(Near threshold, this is of the same order as the col- WH ESHOL

lapse time associated with similarity solutions.') A

typical value for t. is about 0.1 sec, compared with GROWTH

about 1 sec for y-1. For nb/n. less than 10 - ' the beam
instability will be even slower.

A model for steady state must go farther, and follow 2 ).2 2

the power injected by the beam to its ultimate dissipa- D BEAM D
MODES

tion in the plasma. Our qualitative picture of this pro-
cessFIG. 3. Trajectory of the state of a collapsing wave packet,
mrwa ak is charated n Fg.erzed bye "tt"o arat: shown in a "phase" space, in which a packet is labeled by its
muir wave packet is characterized by two parameters: square width, (A.) 2/Xb, and its mean energy, W (161 4, /
its energy density W, and the square of a characteristic 4

ne . Energy Is injected into packets of a width set by the

spatial half-width Ax (in units of the Debye length). beam Instability. The collapse is initially adiabatic, then

These two parameters form a kind of two-dimensional supersonic, and finally ends in wave-particle energy transfer.
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[Eq. (10)] and the collapse time t,, Eq. (15)), these ar- where mr/Al is the electron-to-ion mass ratio, and>, is 2
guments predict the dependence of the square width the usual ratio of ion specific heats. The real electric! 6r> of the packet, on time, field of the Langmuir waves in physical units in terms

(r 2) =(6r%)(1 - t2/t), (18a) of the dimensionless envelope S is

and also the dependence of the energy density, if one EL =Re[(,/)/2(32ntI.3)/28exp(-i .y)I. (23)5 assumes that the shape of the packet remains Gaussian in the extreme supersonic limit, only the o' term need
be retained on the left side of Eq. (21b). Equations (21)
then have a well-known three-dimensional (supersonic)

- where D is the number of spatial dimensions of Eq. similarity solution,''" given byS (16). =(, -7 )-'R(u), u (24)

B. Adiabatic similarity solution = (1,- t)- I(u),

In the later stages of adiabatic collapse, it is likely
that the packet has distorted in shape and has begun to whrtitesuroncolaetmad 1 s

apprachtheshap ofthesimiariy slutin. The again chosen to have a maximum equal to unity. Thisapproach the shape of the similarity solution.' The
similarity solution is of the form implies that the time for supersonic collapse is given(in real units) by

6 = (t -t)-1/21R(u), (19a) I(pt a = /WW)W 1-1 1, (25a)

u"r/( Q 1)1/2. (19b) where W. 0 is the value of S-,,,,'8irnO at the time super-

When (19) is inserted into (16), an ordinary differential sonic collapse begins. If the supersonic stage follows
equation for R results an initially adiabatic collapse, as we are assuming here,

i(l + .ua)R + 8=R+ j RI R= 0. (19c) we can roughly take Wv,' 16 in/ll Ifrom (Ila)1, so that

We can arbitrarilly set IRI to be of order unity at its / (3/16)1/2(M/o)• (25b)
maximum. Then, we find that the collapse time of the We shall use these similarity solutions later to calcu-
adiabatic similarity solution is late the emission from collapsing Langmuir waves.

There is numerical evidence that certain initial field
Llpt=3 = ,2 configurations relax into similarity solutions,"O-"2 but

where we have assumed the spatial average KISM) the analytical foundations for why this is so remain
I 'maxI2. Note, this differs from the virial theorem largely unknown. It is also useful to note that the di-

prediction, although when W is several times Wth, they mensionless dispersion collapse time 1. is simply
are numerically close. (In essence, the similarity so- (12) - '2.
lution does not "remember" initial scale lengths, such In summary, the role of Langmuir collapse is idi-
as Ak-'.) From (19a) we also get a prediction from the cated in the energy flow diagram in Fig. 4. Most of the
similarity solution about how W varies with time electron stream energy remains intact during its prop-

W8 (t) = w(0)/(tO - I). (20b) agation from the sun. A small fraction of this energy
(18b) only in two [see Eqs. (10) and (14)] goes into Langmuir waves due

Thsi naypoi gemn ihto the bump-on-tail instability. Some of the resulting
dimensions. Also, the half-width of the collapsing self- a u wa packetbcllaps due o non lin
similar solution can be much narrower than (6r'). Langmir wave packets collapse due to nonlinear wave

interactions. During the collapse, a small fraction of

C. Supersonic similarity solution the Langmuir energy is radiated away, mainly at 2w.
However, most of the Langmuir energy is eventually

As W increases, the collapse becomes supersonic, in dissipated by coupling to electrons and ions n the late
the sense that the inequality (11a) is violated. At this stages of collapse, which we do not treat expiicitly in
time, the cubic nonlinear Schridinger equation (16), no this paper.
longer provides a correct description, and we mustlongr povies corectdesripionandwe ustIt is important to note that a strong conversion of the
employ the so-called Zakharov2 equations, which allow It i s i nto nteats verseon of the
for ion inertial effects and electromagnetic dispersion."' Langmuir waves into (transversely polarized) radiationis not expected, because the parameter r 3r;, is
These equations may be written as much greater than one, and the early fields are entireh

(ie +,4. +-- rxK- h=O, (21a) longitudinal. This matter is discussed in some detail
3v y in the Appendix. In the next section we treat the conver-

sion into radiation by familiar techniques for given cur-(r -2)p = .2 2, (21b) rent distributions, and obtain expressions for the emis-

where R is the ion density fluctuation, and the dimen- sion from a single collapsing Langmuir wave packet.

sionless units are' °  
IV. EMISSIVITY OF RADIATION FROM LANGMUIR

2 ( 12/ WAVE PACKETS

3 1The transverse nonlinear currents, r', associaited
-, 13 ___(22)

L ,,_( with (longitudinal) Langnmuir waves can lead to emission
2 p ,, ,, of radiation at 2w, and at w.. We assume a modl of
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ENERGY FLOW 0 is the angle between J'd(K,.J and P. Equation (26)
takes into account the fact that the observation point is

imbedded in the plasma with a local plasma frequency
ELECTRON BEAM PROPAGATION w,(r) which varies on the scale of an AU.

The geometry is illustrated in Fig. 5. Note, the
INSTABILITY factor sink' guarantees that only the transverse coni-

ponent of the current contributes to the emission. The
time average is over a time T which is long compared

LANGMUIR WAVE PACKETS (SOME DO NOT COLLAPSE) with the dominant frequency wo(T may be set equal to

the collapse time).

COLLAPSE We are interested in nonlinear currents centered about
,M I a dominant frequency w,,

. J"'(r, 1) = j'" (r, /) exp(-iwoi) + c. c., (27)

SMALLER LANGMUIR PACKETS . where the time dependence of the envelope j"lr, /) is
slow on the scale of w". Making use of this slowness,

2w p RADIATION Eq. (26) can be expressed in terms of the envelope

LANDAUcurrent as
DAMPING EMISSION OF ION-ACOUSTIC ipKo sin 2

d)" 1 f,,) , (28a)
". QUASI-MODES 71 - (

d(I 87rcl

BACKGROUND ELECTRONS *$ where

K"IC[1_2(rP/2 (28b)

IONS is the principal wave vector of the emitted radiation,

FIG. 4. Energy flow during a type III solar radio burst. Most and wp(r) is the plasma frequency at the observation

of the energy remains in the beam. A smaller fraction goes point. Also, (P, is the angle between -and j (K,,,, = 0).

into beam-unstable Langmuir waves, some of which collapse. We .now need to develop expressions for the appro-
A small fraction of the Langmuir energy goes into radiation.
When a packet has collapsed to a size of several Debye lengths priate nonlinear currents. These currents arise from

it surrenders its energy to electrons and ions. the beating of first- or second-order electron density
fluctuations with the velocity of electrons oscillating in

indepenident emissions associated with the current of the Langmuir field.

each of an assembly of Langmuir wave packets. The The current which gives rise to emission at the plas-
emissivity of a given wave packet is then a simple func- ma frequency is third order in the Langmuir field
tion of the nonlinear current J . By standard techni- ) =,

ques, we find 4or P(r, ) n)EL , (29)

dP -cr
2 1 f t where 6n2 is the density driven by the ponderomotive

W52 -41r Tf 13 hr iti h e
force in Eq. (21b), and hence second order 3 in the
Langmuir field EL. The relationship between 612 and_ P f ' d o wK I J .( , w i

41rc27. __ 21 (26) the dimensionless n is given in Eq. (22). We note that,
although EL is entirely longitudinal, the product 5naEL

where r is a position vector from the current distribu- has a transverse component, in general. Also note that
tion to an observation point in the radiation zone, the in the adiabatic limit 6, reduces simply to -I T2 [see
wave vector K is defined as K =(P/c)[w2 -2(r)1'/2, and Eq. (16)1.

COLLAPSING LANGMUIR

WAVE - PACKET

W , K O - - p 2 (r)] 12
* FIG. 5. Emission from a single col-

lapsing Langmuir wave )acket. Pho-
PHOTON r OBS. POINT tons of frequency and wave vector K0

..._ / are radiated into the solid angle dil
JNL(K.) about the observation point r. Note

/this observation point is embedded in
the plasma Iwith local plasma fre-
quency w (ir).
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The current at 2w, is second order in the Langmuir We note parenthetically, however, some recent evi-
field EL dence 2 that the nonlinear behavior may consist of

(rl) . periodic breakup and reconstitution, rather than colla-
41TaeJ2r, P w(2n/no)EL ( pse, due to ponderomotive effects in the phase. Since

Here, 6n, is the first-order density of electrons os- no theoretical understanding yet exists concerning the
cillating at the plasma frequency. (The factor 2 arises competition of such behavior with collapse, it is not
because the emission frequency is 2w,.) An expression taken into accout in the present paper. We assume here
for 8n, follows immediately from Poisson's equation that collapse continues down to scale lengths of several
for the Langmuir field EL, Debye lengths.

pi, = -V* EL/4nc. (30b) In the very early phases of collapse there cannot be
substantial emission because of the momentum mis-

A. Emission at 2w, match, K0 - 2ko, in the phase factor in the integrand of
Eq. (35). There is strong phase mixing, as we shall

It is easy to prove that there can be no dipole enis- soon show. As A" collapses more and more, the phase
sion at 2wp. The stand,',rd multipole expansion for mixing becomes less important. By the time the
jn'(K, 0 is generated by writing the spatial Fourier collapse has become supersonic (W> 16 ml/Al), emission
transform of the current in terms of the Kronecker can occur.
delta 58,,,=V,,r 1 : The amount of emission depends sensitively on the

J 0(K,t) f d'r(V,,rj)j(r,t)exp(-iK.r). (31) shape of AZ, as supersonic collapse proceeds to still
smaller scales. There have been no calculations of the

In the dipole approximation, K r is set equal to zero. three-dimensional evolution of A' and 0 predicted by
After an integration by parts and application of the con- Zakharov equations. Model equations studied by
tinuity equation, this yields j"'(K, ) -iw,,d, where d is Budneva et al." suggest that a small collapsing core
the dipole moment of the nonlinear charge density dis- breaks away from an initially Gaussian packet, leaving
tribution. Hence, whenever the spatial integral of the (essentially) Gaussian corona behind. The core
J"'(r,t) vanishes, there is no dipole emission. We can eventually tends toward the form of a similarity solu-
show that this is the case for harmonic emission by tion to the equations.
using Eqs. (30) for the nonlinear current J2". If We shall estimate the current in two different ways.
Re[& exp(-iwil)1, then J." =Re[j,' exp(-2iwu.t)1, where First, we shall assume that the entire Gaussian corona
the envelope, J,, (r) is proportional to (V 8)8, from collapses. This will lead to an upper bound on the
Eq. (30). Since I is predominantly curl-free (see the emissivity. Then, we shall assume that only the (much
Appendix), there follows the vector identity smaller) core collapses, and tends toward a supersonic

• ,a. t"-is/_ [^^ 6i * similarity solution. This will give less emission. The)=r, = i =--v(81 2 (32) actual emissivity probably lies between the two limits.

Hence, f drj, P vanishes, by the divergence theorem, In order to present a coherent discussion of the var-
and there is no dipole emission at 2w.. ious spatial scales, we introduce the following defini-

tions: Define I. it) as the half-widths of AZ

To find the emissivity for harmonic emission in terms

of the field 8 of a Langmuir wave packet, take the A4(Z=Lr 0) A2(- 0, r L,) '.4(0, 0), )36a)
spatial Fourier transform of the current given in (32). and I, as the scale lengths of the phase
Upon integrating by parts 1 : 0 V 0(36b)

2.4,] o, ),, - ,'fdrexp(-iK,,.r)@81m -2 2 " We now discuss the implications of the time depen-
(33) dence of L(/) and 1(/) for the size of the current, j, in

Eq. (35). We begin with the time i - 0 at which the beam-
For simplicity, let us assume that the Langmuir field amplified Langmuir wave packets begin their collapse.

direction remains essentially parallel to ko during
collapse. We write 1. Onset of collapse (t=01

Initially, the packet moves at a phase velocity equal
6(r, ) = A exp(iO/2), (34) to the beam velocity, so the phase is

where the (real) scalar amplitude A, and phase 0, de- 0 2k, r, I (2k)', l, 01. (37a)

pend on space and time. From Eq. (33), we find The half-widths L and L, correspond to the half-widths
of the initial packet defined by Eqs. (9) and (12)

J2.' i 4 0rw)m f d'rexpji(K, • r-0)0A, (35) L,,(0) - (-k,)j ', L,(O)- (.,.,)' (37b)

If we assume that A2 is Gaussian, the integral for j,,,
The magnitude of the emission depends in detail upon can be performed. It is proportional to

the space-time evolution of A(r,/) and 0(r,/). We shall
assume that A2 collapses, and that 8 starts out as exp)-(A-2k0 )L/41, (37c'
2k, -r and does not evolve pathologically, which is vanishingl F nall. This result corresponds to

394 Phys. Fluids, Vol. 23, No. 2, February 1980 Goldman, Reiter, and Nicholson 394



the well-known fact that beam-driven Langmuir wave satisfied.
packets cannot emit type Ill radiation at 2,,, in the ab- To proceed further, we need models of the time de-
sence of nonlinear (or other) interactions which broaden pendence of L,,. The most optimistic of these assumes
their k-space widths. This is because momentum con-serv tio de and th t t e p oto wa e v cto K, bea collapsing G aussian corona. This leads to an uppe rservation demands that the photon wave vector K. be bound on the emissivity.

equal to the sum of two Langmuir wave vectors k,1 and
k,, which lie within the packet. Since K, = fwp/c [by 2. Coronal collapse model
(28b)JI and k, = w~, [by (5a)j1, we see that this is not In the adiabatic stage we can use the scaling implied
possible for beams with speeds ?, of order 2c or small- by the virial theorem see Eqs. (18)1
er. The situation is illustrated in Fig. 6. Essentially,
the wave packet is too narrow in k space to contain L., (-k,, )-'(1 - 1-'/t.P. (39)
Langmuir wave vectors k,), and k,,, sufficiently smaller
in magnitude than k, to add up to K 0. The mathematical
expression of this is that the exponent -(Ko- 21)"L-/4 the adiabatic stage as long as L k, 1, since plasmonexpressionmofsthissisvthat thetexponente-(Kd2!'antLty
in Eq. (37c) is initially a large negative number. momentum is conserved 2 Another conserved quantity

is the plasmon number, 1,2

However, as the packet collapses, (4,- 2k)-LV/4,
tends to zero. The reduction factor exp -(K,, - 2k,,)2L2/4 N - f d'rA2 

- const. (40)
is no longer effective, and the time L,, has become
small enough for the following condition to be satisfied: Equations (39) and (40), taken together with the as-

1, (38) sumption of a Gaussian shape, give us the time depen-
dence of the space-averaged energy density 14'() j see

for no phase mixing (here, we have used the fact that also Eq. (18b)j:
K,, is of order k, and assumed that , does not get much
smaller than L). By this time, the packet has broaden- W(t) = (t/ (41)
ed2 ' 9 sufficiently in k space, so that it contains pairs of 1- ,n)(41

wave vectors [such as k, and k. in Fig. 6(b)I which pro- For phase mixing to disappear, Eq. (38) must be satis-
perly sum to K.. Put in another way, the phase factor fled. Using the expression for L in Eq. (39), this gives
in the integrand of Eq. (35) is no longer effective in the time t,, at which a collapsed corona begins to emit
phase-mixing the integral by the time inequality (38) is harmonic radiation

LANGMUIR PACKETS IN k-SPACE (1-tn/tv) .-=,k,- 1/12. (42)

However, at this time, according to Eq. (41), the ener-
gy density W(t,) will have increased by three orders of

g Omagnitude, and the collapse will be well into tle super-
(PHOTON) 0 sonic regime. If the entire corona collapses enough for

phase mixing to be negligible, then the current in Eq.
^wp (35) becomes proportional to the plasmon number N in

Vb b Eq. (40). Since A' is an invariant of the Zakharov equa-
tions (21), it is conserved even in the supersonic stage
of collapse. We can therefore find an upper bound on
j_, by using N to evaluate the integral during the super-

-Z tsonic regime. N can be evaluated from the initial

Gaussian conditions

SoS (T W9 0) (43)
kDkWI,,

Using this as the value for the integral in Eq. (35) and
inserting into the emissivity formula (28a) yields an

PLASMONS upper bound for the emissivity during the supersonic

D46k k 0stage of collapse

Ak5k0  dP 108(,]' sin2',,,

MOMENTUM MATCH: + 2 K

FOR EMISSION k(2 .LTLDLo (44a)
FIG. 6. Momentum conservation requirements for emission ,5 ) W h c j .
of harmonic rediation (at 2uI, by a wave packet. Initially, The angular factor is
the packet i centered around k0, and is too small to contain
two plasmon wave vectors which sum to the photon wave vec- sin'!,,,= 1 -[2(o.Ko)2 _ 112. (44b)
tor K8. After some collapse, the packet has enlarged in k
space, and contains enough plasmon pairs of the proper mo- This factor has its largest value (of unity) when the
mentum to conserve. radiation comes out in a 45" cone about the beam direc-

395 Phys. Fluids, Vol. 23, No. 2, February 1980 Goldman, Reiter, and Nicholson 395



tion, which is in agreement with the known'' coupling of calculate the (smaller) emission from the similarity
radiation at 2w, to two Langmuir waves in parametric core.
instability theory. From Eqs. (45a) and (38), we find the time t, at which

We note, in passing, that the maximum total energy the collapsed core can begin to contribute to the current,

radiated, according to Eq. (44), is 10
-3 

times the total j2.p, without substantial phase mixing

energy in the Langmuir packet. Hence, it is indeed
valid to ignore the effect of radiation losses on the (1 - i- /) '' k, , 1 4. (45d)

collapse process (see Fig. 4). According to (45b), the energy will have increased by

3. Core collapse; similarity solutions a factor of 16 at this time, and the collapse will shortly
enter the supersonic stage. We shall assume that all

A very different picture emerges if we assume that the emission occurs in the supersonic stage, since by
the collapsing packet quickly assumes the form of a then a supersonic core of similarity form may have had
similarity solution. In the adiabatic stage, the packet time to develop.
width of a similarity solution, L , can be considerably The half-widths L, of a supersonic similarity solo-
smaller than that of a Gaussian corona [Eq. (39)1. the haind Lr , o - by singait 1:
Budneva e/ a. " have studied the adiabatic collapse of
a spherically symmetric scalar field obeying a cubic L -. z L,33 1 Y 2( 1 2 P k j (46a)
nonlinear Schrodinger equation Ithe scalar version of . ~ -- L31 (-1/ ,J
our Eq. (16)1. The coronaof an initially Gaussian packet where I-0 is now the onset time for the supersonic
substantially above threshold was observed to remain stage of collapse, and W - 16 rn.'A. (We note that
essentially stationary, while a narrowly spiked core Jc d r A 2 is small but invariant in the supersonic stage.)
collapsed and approached the form of a similarity solu- At t I 0, the phase-mixing criterion (38) yields k,,L"
tion. A repetition of these calculations near threshold
also seems to show self-similarity. Under such condi- 03 ota h urn . a eeautdwt htions we might expect much less emission, phase factor in the integrand of Eq. (35) ignored. The

result for the current may be written as,
The width of an adiabatic similarity solution is obtain- 9 3 AJ /

ed, roughly, by setting u 1 in Eq. (19b). Then, the J2  (7 - (l--1 O 12,, (46b)
half-widths, Ls and L., of the adiabatic similarity
solutions are where

L , ~ L f "o (I k d'I( W th/ W "? l' 
2
(l - 1/ 1 ,2 . (4 5 a l I ,,, W u,, ,(R ,u , ,R ' (4 6 c )

Note, the half-widths are independent of .1k,, since

IVtz 2 4 (Ak,) 2/k. In effect, the similarity shape is and R is the similarity field, defined in Eq. (24). As
independent of the initial shape, and is narrower, discussed beneath that equation, R has a maximum
particularly when Wt tVh. However, in our case, W value equal to one. Its half-width is also of order unityv
is only slightly greater than 4',h, so that the half-width so we expect I to be or order unity as well. The
L ," appears to be proportional to (Ak-)-. This is much emissivity that follows from this current is found Ivia
smaller than the parallel half-width of the initial Gaus- Eq. (28a)I to be
sian packet, L, (Ak,)". The presumption is that a dP9' 3, 3 .11 rt\ I
narrow spike is superposed over the broad Gaussian k (47)
corona. Pereira and Sudan's have shown that initially 1 ?, 6D I

anisotropic two-dimensional packets tend to become where we have approximated 1, 1. This estimate
more isotropic as collapse gets underway, so the scal- gives substantially less emission than that ot the coronal
ing of L" zLm is not surprising. We must note, how- collapse model, Eq. (44), because the core is so much
ever, that Eq. (45a) has no validity until collapse is smaller than the corona. For the parameters we have
well underway. been considering, JdP/d 1 ,1 is about 10" times small-

e r than id (11 402 iA
The scaling of the energy density of an adiabatic eh "I

similarity solution with time is given from Eq. (19a) There is a clear need, here, for numerical work to
W(0) determine the time-dependent shape of a three-dimen-

W( -a ./ta) (45b) sional collapsing packet, under type IllI conditions.
Unfortunately, the Zakharov equations should not be

Comparing (45a) with (45b), we see that, in three solved in fewer than three dimensions, because the N
dimensions, the half-width volume decreases at a faster integral of a truncated similarity solution only goes to
rate than the energy density increases, hence, zero with time in three dimensions [cf. Fq. (45c). One

cannot use spherical or even cylindrical symmetry,
drA' - ,(45c) because such symmetries require zero field at the ori-

|Jcf ( tI gin," due to the vector nature of the envelope. A full
where C indicates integration over the core. The con- three-dimensional numerical solution of the vector
tribution of the core to the N invariant is therefore Zakharov equations is prohibitivelv expensive at this
small. (Phase mixing may still be expected at larger time. However, some insight has been gained by tUrther
r, due to K. and the self-similar phases.) We now studies of model equations for a scalar envelope, such
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as that of Budneva c al." In particular, we have found and the dimensionless density and field supersonic sim-
narrow cores in packets close to threshold in recent 6  ilarity solutions fl and R are defined in Eq. (24). We
numerical work using Budneva's model, which suggest have omitted the phase factor exp(iK,, r), which is al-
that the emissivity may lie closer to the lower estimate ways of order unity. In the absence of phase mixing,
of Eq. (47). we expect the magnitude of I, to be of order unity. The

current is then inserted into the emissivity formula
B. Emission at the fundamental (28). The time-averaging interval 7 is chosen to be 1,

The treatment of emission of radiation at frequencies the collapse tine. The result may be written as

close to the plasma frequency is somewhat more chal- dP 1 34' vl12)'3 AQ . *

lenging. We must have approximate frequency matching __ _ 64 o  '± ] / J . (50)
between the Langmuir waves and the radiation: 1 + (.

2 K o l D

=+ This means that the wavenunber K 0 of the
fundamentl Tis mchsal tha the wavenumber K of It is of interest to compare this with the similarity so-fundamental is much smaller than the wavenumber k,, of

the Langmuir waves. K = Trk,, c -- k), as long as lution prediction of emission at the harmonic Eq. (47)):

, c -. 1 (see the Appendix).) In order to conserve mo- • , r
mentum, one requires either dynamical ions or strong - Z (51a)
spatial inhomogeneity. In the present calculation we ig- dP, dQ k0 /' Al
nore background plasma inhomogeneity, so we do not
allow local or global density gradients to absorb the ex- The large factor r2 'r in Eq. (51a) arises because the

tra momentum. In the conventional discussions of fun- harmonic emission is quadrupole, whereas the funda-

damental emission it is usually assumed that ions or mental emission is dipole. The small factors k. kD
ion-acoustic waves take up the required momentum, and m/.I correspond, respectively, to the smallness
The corresponding "weak" turbulence process involves of the wavenumber and the higher-order field depen-

the scattering of a Langmuir wave (plasmon) off ions dence in the fundamental emission.

and its transformation into a photon: I-i+t. This may The ratio on the right side of Eq. (51a) is about 0.2
even occur as a stimulated process (instability). for our parameters, indicating almost as much funda-

We shall make the case here that fundamental emis- mental as harmonic emission from a single collapsing

sion can also occur in "strong" turbulence, i.e., from packet in its supersonic phase, provided that the simil-

collapsing Langmuir wave packets. It is clear that arity form is justified. It is also of interest to compare

emission cannot occur in the subsonic stage of collapse, this value with the value obtained from weak turbulence
because the ions are adiabatic, and momentum cannot theory. The weak turbulence estimate 7 depends upon

be conserved. However, fundamental emission can oc- the assumed distribution of K E, ". Taking the ratio
cur in the supersonic stage when the ions are dynanic. of the result predicted by (50) to the weak turbulence

result gives
(An argument has been advanced that a collapsing

wave packet cannot emit radiation at eP because the as- dP dtil s

sociated density cavity "traps" it. This argument is , t , (51b)
specious because the wavelength of such radiation is ",,

much longer than the characteristic size of the cavity. where , depends upon the assumed form of the distribu-
The emission occurs from this packet as a whole, in a tion of wave energy, and can vary by three orders of
manner analogous to the radiation by an antenna. This magntud with a ns at Smity taes oreis stated mathematically in the Appendix.) magnitude with assumptions that Smith" takes to be

reasonable. We will take , =1. Here, .V is the number

The current which governs the fundamental emission of particles in a Debye cube; N z 10 " for the plasma we
is given by Eq. (29). The Fourier transform of its en- are considering. The numerical value of the ratio in
velope is (51b) is therefore approximately 101. The enormous

enhancement over the weak turbulence result is readily
j, (K0, t)= fl3rexp(-iKo.r) 6 L(r, ) . (48) understandable. The weak turbulence processes require

0 41 a spontaneous fluctuation in the ion density on a scale

In the adiabatic stage of collapse, 6?2 is proportional of the Debye length. In order that the longitudinal fluc-
to - IS I. The dominant phase in the integral is then in tuations can scatter into transverse fluctuations, these
exp(-iK.-r) which arises from SL(rf). This causes the have amplitude for occurring that decreases as I V.
integral to phase mix to zero Isee Eq. (35)1, so that The collapsing wave packet makes its own density fluc-
there is indeed no emission in the adiabatic stage, tuation, and thus this factor is absent. To be more pre-

In the supersonic stage, the prediction from the sup- cise, the power radiated depends upon

ersonic similarity solutions (21)-(25) is that I_.

l) 3if \ 31ni(K,,)= (1 2 \7-F (-tt, '

O~kD-1-T

(49a) The weak turbulence assumption is that the correlation

where function can be factored. Since (E(O) • E(,),will only be

f d 'ui(u)R(u) , (49b) significant over distances the order of , . this is
roughly
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dsist of the simply connected volume in which (r)

(---f- U< /o 6'(r) 1'. The packets will be distributed in terms of

If energy and in terms of spatial widths. At a given in-
stant, some will be growing (due to the beam), some

will be in various stages of collapse, and some will be
t,< AD dissipating their energy into electrons. In the ensem-

ble or space average sense a steady state or quasi-
steady state is assumed to exist.

-- W , X - The instantaneous rate of work perforied by the beam
on the waves is

and by the central limit theorem <5, 6 N. Conse- f d:/' d 'k
quently, dPF/,,l2 1 "'\D:' N. In the strong turbulence P, = f -LL ),(k) (2r (52)

case, 5ji is driven by E and is not statistically indepen- (

dent, so there is no factor of N in the expression for where ),(k) is the growth rate of Lagnmuir waves in re-
the power radiated, resulting in many orders of magni- sonance with the beam JEqs. (6) and (7)t, - is the peak
tude more emission, growth rate, and I? indicates integration over resonant

modes only. The modes in resonance with the beam
In fact, fundamental emission is observed for bursts are those lying in the phase space volume centered

which are interpreted to originate near the sun, with about k within the bounds of the beam-determined
intensities which are comparable to the harmonic inten- widths, .Me and ,Mk, as in Fig. 2 [see, also, Eqs. (9),
sities fromt the same burst." This is essentially inex- In real space, those wave packets which are well into
plicable from the weak turbulence viewpoint, which collapse will not have appreciable Fourier components
fails by many orders of magnitude to predict sufficient in the resonance region. in order to estimate Po we
radiation in the fundamental. The collapse mechanism next need to consider how the packet and energy densit-
discussed here needs to be modified to treat the situ- ies are related.
ation near the sun, but the argument given here is quite
general and suggests that strong turbulence effects can The packet densities are related to the total Four.er
provide an explanation for the observed radiation, energy spectrum by

At AU there has been no observation of fundamental f" "1 ,= (dr 6(r) (53)
radiation, which, in view of the relatively large ampli- J(2r,)'
tudes predicted by (51b) is apparently inconsistent with
the similarity solution predication. This may be due to
refraction by random inhomogeneities in the background l-f 8(r) 'd 'r (541
plasma density which could have the effect that only ra-
diation emitted at the location of maximum density is the energy in one packet (denoted by the sub cipt I)
would be able to escape. Inasmuch as the pulse of ra- and o, is the density of packets with given energy I
diation emitted by the soliton has a frequency spread of We expect most of the total energy to reside in packets
only about 10"x,,, inhomogeneities of the order of only which satisfy or ailniost satisly the condition for co-
'/nz 10-' would have a profound effect.'' We note that lapse. These packets will all be clustered about a crit-
a uniform gradient on a scale smaller than or compar-
able to the random inhomogeneities would eliminate the ialv,
self- trapping. mately,

~* I 'k 
( 5V. DENSITY OF COLLAPSING PACKETS AND f 8, - I,,),,. (55)

VOLUME EMISSIVITY
The mean spacing of thlese packets is assumed to be on

Thus far, we have only found expressions for the em- the order of their volume, which is determined by the

ission from a single collapsing wave packet. We must
now go farther, and estimate the number density of col- beam. This "close-packing" assumption tells us that

, is on the order of the inverse volume of a packet, or
lapsing packets (in the various stages of collapse), in
order to calculate the volume emissivity and make com- o-' I(A )(./,,)21, (56)
parisons with measurements, where Ak,, and W, are the half-widths given by Eqs. (9).

Our model for steady state was described beneath The average resonant mode energy depends on which
Eq. (15), and is summarized in Fig. 3. Langmuir wave
packets receive energy from the beam, collapse, and
finally surrender their energy to particles via wave- In the first case, the number of packets which remain
particle interactions. The wave packets in real space slightly below the collapse threshold during one col-
fill the volume occupied by the beam. Their "discrete- lapse time is much greater than the number collapsing.
ness" arises from the interference of beam-amplified This might be expected on the grounds that the collapse
random-phase Langmuir noise. We may define a wave time is much less than ,', so, at any given titme, there
packet roughly by finding the spatial mean value 5I(r) 2 are still a large number of wave packets below the crit-
over some large volume, and letting the packets con- ical t' contributing to the beam power input in Eq. (52).
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A second possibility is that there is a quasi-periodic and ., and U,, as given by Eqs. (12). The maximum
behavior in time with period on the order of in growth rate is taken 1from Eq. (6)1 to be
which there is cyclical resonant mode depletion. Re-
sonant mode energy builds up during the growth phase, IL _=( (), 9. 2

creating a majority of energy-contributing packets on - 8 8- ', \.b
the verge of collapse. They all collapse together quick- The resulting evaluation gives
ly, causing a severe depletion of resonant mode energy
for a time on the order of '. During this time, anipli- 12,. - 2 K 10-'Fergs cm"'sec" srt  (63)
fication of noise (and perhaps residual fragments of This is to be compared with the measured value in Eq.
packets) occurs, and the process repeats. A long-term (1), which gives 2 x 10-". The upper bound provided by
time average gives a resonant mode energy equal to the theory when P is larger than 10-' is adequate to
some small fraction F of the total mode energy given i make collapsing-packet emission an attractive candid-
(55). ate to account for observed radiation at twice the plas-

In either case, the average input power is [from Eq. ma frequency.
(52) and (55)], Even if the collapse quickly approached similarity

P,- , VFnoUo, (57) form, so that the core emissivity, Eq. (47), were more
appropriate than the coronal emissivity, Eq. (44), the

where F= 1 according to the first scenario, and F- < 1 volume emissivity with F of order unity would still be
in the second. It is not easy to decide between these consistent with the observed emission. However, as we
scenarios on the basis of existing theory or numerical discussed below Eq. (47), no one has demonstrated that
simulation, 9 so we shall leave F undetermined, for the three-dimensional Langmuir packets just above thres-
moment. (The problem with numerical simulation is hold will quickly converge to the form of similarity so-
that the "box" size would have to be chosen large lutions. We note further that only the most pessimistic
enough to contain a statistically significant distribution assumption of core emissivity and cyclical resonant
of wave packets. This seems to be prohibitively costly mode depletion (P - 1) leads to a theoretical volume
at present.) emissivity below the observed levels.

The spatial density n. of collapsing packets can be es- As an important side issue, it is worth pointing out
timated by equating P,. to the rate of energy flow 1) once more that either of our statistical models (F = 1,
where, or F -c 1) is consistent with the absence of quasi-linear

P, z (1/ rc)nP'Uo. (58) bean plateau formation, This is because the wave en-
ergy density of beam-resonant modes can never greatly

Here TC is the appropriate collapse time. Equating (5'1) exceed the collapse threshold, which is well below the
and (58), beam energy density Isee Eqs. (13) and (14), and the

n, =),rC(Fn) . (59) discussion which followsi.

The density of adiabatic collapsing packets is then ob- VI. CONTRAST WITH PREVIOUS THEORETICAL
tained by letting Tc equal the adiabatic collapse time f. WORK
given in Eq. (20a)

We wish to point out the main differences between the
nlad= (),/w)(8/W)(Fno); (60) theory proposed here and an earlier attempt at treating

and-the density of supersonic collapsing packets is ob- emission from stable solitons, due to Papadopoulous

tained by letting T, equal the supersonic collapse time and Freund.'

t. given in Eq. (25b) A central difference hinges on the role that the mag-

T netic field plays in the evolution of the solitons. Papa-
n . v - (Fno). (61) dopoulous and Freund assert that the effect of the mag-

f 4 m netic field is to produce stable, that is, not collapsing,

We can use Eq. (61) to calculate the volume emissivity: essentially one-dimensional solitons. This argument
relies, in part, on their claim that the magnetic field

If we combine Eqs. (44), (61), and (56), we obtain an
upper bound on the volume emissivity for emission at plays an important rose in the linear stage of beam-
2w: mode growth and distorts the real-space wave packets

into one-dimensional "pancakes." We assert that the

-dP = magnetic field is irrelevant in shaping the beam-mode
d2. Fn do 27 packets for the ratio of wec,,!w" 10-2 at 0.45 AU.

34 F  M ak/ )(k. W ) n Ve The argument that Papadopoulous and Freund rely on
8 wo m \ kD ]ak,, l \ c " is stated more explicitly in Smith of al.," where they

(62) claim that the angular spread in wave vector space of
the growing modes excited by the two-steam instability

We evaluate this for the following parameters: is less than 10 for x, e, Z 10"2. This conclusion is er-
roneous, and based on an incorrect application of an =40 cm "3 , 0.=10 eV, standard formula for the growth rate of the unstable

n1 /n=10", ' /=1/3, W= 2 W,,, modes in the presence of a magnetic field. 21
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I
" K'(,K.+K ) R as ) increased, and I T,. However, this regime

is inappropriate for the type 11 parameters, in which
where R. = 1', v, and the ratio of beam to background density th n, is never

,-- ') 
1 

f expected to exceed 10-, so that - (1 10)(1 'T,). As
)= 2 , (a) exp +shown by Goldman and Nicholson2 direct collapse is the

dominant energy transfer mechanism in this regime,where I,(a) is the Bessel function. Papadopoulous and not the modulational instability.

Freund claim that the growth rate is only significant

when A R 1, basing their claim on the approximation
of , (a) by the term with I =0. This approximation is VII. CONCLUSIONS

totally unjustified for larger a, however, since ,RB In conclusion, we believe the models we have developed
BI/, 10, and approximately 20 terms in this paper for electromagnetic wave emission from

need to be kept in the series. If one does this, one collapsing Langmuir wave packets, give the best pus-
find that -(0)=l, (n) )=0.9989, i.e., the dispersion sible state-of-the-art estimates for such emission.
relation is extremely insensitive to KR for these val- Reasonable models give predictions which are well above
ues of RHB. Furthermore, it should be noted that in the volume emissivity observed during type Ill bursts,
the limit of vanishing field, K,R - -, all terms in the Eq. (1). Further numerical work on the dynamical and
series must be summed. Papadopoulous and Freund's statistical details of collapse would be hihtv desirable,
result is obtained by taking the strong field limit of the but the need for working in three dimensins may make

dispersion relation, and then applying it for weak fields. the cost prohibitive Isee discussion below Eq. (4)}.

Their argument that the solitons are stable is based Further theoretical work is also necessary, parti-

on the assertion that they are essentially one dimen- cularly in the refinement of our statistical assumptions.
sional. Since the assertion is false, there is no evi-
dence which suggests that they are indeed stable. We ACKNOWLEDGMENTS
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uniformly throughout the plasma. By an argument that
they think reasonable, they then conclude that i B - 1 is APPENDIX: DERIVATION OF EQUATIONS FOR
the condition for a steady state. Y, has the same de- TRANSVERSE AND LONGITUDINAL FIELDS
pendence on the parameters of the problem as 1 T,,
where 7> is the collapse time of the solitons, and in We want to show that if 1, 1, then a consistent

this way they obtain 7
B v W, it' ?n/Al, or *!B (w/ solution of the equations of motion for a plasma can be

M) 1 / 2WI '2 , W>m/M1. obtained in the form

Our picture is that the transfer of energy is due to the 8 S,+&/(c')2 ,
direct collapse of wave packets, which occurs when the where S - TY and '-1 - . The field 8 is always
energy in the unstable modes has grown so that W predominantly longitudinal. The longitudinal part 8,,
- (NK) 2 ; W is fixed by the velocity spread, not the in- satisfies a modified form of the Zakharov equations,

tensity of the beam. The collapse does not occur and 8, is the radiation field. We begin with Eqs. (21),

throughout all space, and, in fact, the density of col- with all tildas omitted from dimensionless quantities
lapsing packets, n, can be computed from an energy aS
balance equation , -- c' 2 1x VX8 + '('.s) 8 , (A])

BW = (1/rT)WL)n,'( -3r2r =V S!,(2at 2

as lonj as Y, 1 , t I/L . When Y. - I ,, the ( , (A2)

collapsing solitons are closely packed, and the physical where c' =" c 'ir, and will be assumed " 1. If we make
stuation is similar to the picture that Papadopoulous the ansatz 6 =Sj8+si 1c'

2  ,  
_,,, we find, to lowest

,2rand Freund propose in that oi would remains at 1 1' order in I'r
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!E(M) The supersonic similarity solutions and plasmon num-
a2 ber invariant arguments we have employed for the field

8 are based on the field equation (Al). Since we have
i V-2"(VXS)=(,2VX(8), (A4) just demonstrated that the transverse part of 6 is of

at ~\2 I order (c')" times smaller than the longitudinal part,
82_17 our solutions can also be regarded as satisfying A8).

-- r~ _#l .= 72&12 (M5)
at" We note that if second harmonic terms are included in

We Fourier transform (A4) for the transverse field the current, these will have a negligible effect on the
8 , in time and invert the resulting Helmholtz equation: motion of So. The radiation due to these terms is cal-

culated from (A1O) with the appropriate current, and
x exqiKir-rlK 12 (x /dr',).

K =- W '(r,)
2

. (A)

Integrating (A6) by parts and substituting in (A3), we 'V. E. Zakharov, Zh. Eksp. Teor. Fiz. 62, 1745 (19721 ISov.
have Phys.-JE TP 35, 908 (1972)1.

1 f exp(iK Ir -,"l 2M. V. Goldnman and 1). It. Nicholson, l'hys. Re.v. Lett . 41, 4016
KS,,+ 4x pVXr f Ir r' (1 978
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Space Plasmas, edited by P. J. Pahmadesso and K. Paptdo-
+A,(v,t), where I and I designate the longitudinal and poulos (leidel, Dordrecht, 1980).
transverse parts of the vector, we find that go satisfies k; . H. Magelssen and 1). F. Smith, Solar l'hvs. 55, 211 (1977).
the equation 9

1). It. Nicholson, M. V. Goldman, P. lloyng, and J1. C. Weather-
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i &so+ +(V* 80)=I o 8') (A8) °V. E. Z akharov, A. F. Mastryukov, and V. S. hSnakh, Fi/.
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the corrections due to finite values of K being of order ().1B. Budneva, V. E. Zakharov, and VS. Synakh, Fi,.
l'lazrny 1, 606 (1975) [Soy. J. Plasma Phys. 1, 335 (197511.
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Dimensionality and dissipation in Langmuir collapse
Martin V. Goldman, K. Rypdal,a) and B. Hafizi
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The nonlinear Schr6dinger equation provides a model for Langmuir evolution at low energy density and
wavenumber. This equation is studied using virial theorem techniques. Stationary solitons and pulsating
solitons (related to "breathers") are found in one dimension, as well as collapsing packets in two or more
dimensions. Initial wave-packet collapse thresholds and times are found, with and without constant

collisional damping. In three dimensions, a narrow collapsing core is observed to break away from an
initial Gaussian packet and become asymptotically self-similar with time.

I. INTRODUCTION envelope S. Goldman and Nicholson have recently
shown' that the nonlinear SchrdSdinger equation provides

It was Zakharov' who first pointed out the relevance a good model for the early nonlinear evolution of cer-

of optical self-focusing phenomena to the nonlinear be- tain beam-excited Langmuir wave instabilities. When

havior of large amplitude Langmuir waves. Whether the the beam growth rate is slow compared with the non-

waves are electromagnetic or electrostatic is of little linear (collapse) time scale, the role of the beam is

consequence. The associated ponderomotive force essentially only to determine the shape of a "linear"

pushes electrons out of a spatial region, and they drag Langmuir wave packet, which is then used as an initial

the ions along. The lowered density creates a higher value for the undriven nonlinear Schr~dinger equation.

index of refraction in which rays undergo total internal Under these conditions, virial theorem techniques'

refraction and can be trapped if the nonlinearity is have been used to find the threshold and collapse time

strong enough. In one dimension, this nonlinearity can of two-dimensional 6 Langmuir packets. Two-dimen-

exactly balance the linear dispersion (diffraction) of a sional theory and numerical analyses4 ,6 show that such

wave packet, leading to the formation of an envelope direct adiabatic collapse is very likely to play an im-

soliton. In two or more dimensions, nonlinear refrac- portant role in the saturation of beam instabilities at

tion can permanently exceed dispersion. When this oc- very low beam densities. An important example is

curs, a stationary balance is impossible and the packet furnished by the solar-generated electron beams re-

collapses spatially. The collapse threshold can occur sponsible for type III radio bursts.4

at initial Langmuir energy densities which are still One of the purposes of the present paper is to show
many orders of magnitude smaller than the background how the assumption of near-Gaussian spatial behavior
electron energy density; so, simple nonlinear models of the Langmuir field leads to a closure approximation
are expected to provide a good description of the early in the virial theory. With this approximation, we are

stages of collapse. able to estimate the threshold and find an upper bound

In the so-called Zakharov equations, 1 2 the (slow time) for the collapse time of three-dimensional Langmuir

electron density in the Langmuir wave equation is al- packets. Additional numerical work, based not on the

lowed to be nonlinear. Quasi-neutrality is assumed, virial theorem but on the Schrtdinger equation for a

and the (ion or electron) density obeys a second, ion- spherically symmetric scalar field, shows a self-sim-

acoustic wave equation with a source term proportional liar collapsing core developing out of an initial three-

to the ponderomotive force of the Langmuir waves, dimensional wave packet close to threshold.

These coupled equations have been used extensively2" ! In one dimension, the virial theorem with closure ap-
to describe Langmuir collapse. They provide the dy- proximation leads to very simple predictions of pulsat-

namical basis for what is often called "strong" Lang- ing solitons which are consistent with the results of de-

muir turbulence. tailed numerical solutions7 based on inverse scattering

In the early stages of collapse, at low wave energy theory. The pulsating solitons have amplitudes slightly

densities, the time-dependent (inertial) term in the ion higher than for the corresponding stationary (sechx)

density equations is negligible. The ions are then solitons. They are closely related to "breathers,"

adiabatic, and the density is proportional to the nega- which are strictly periodic bound states of two solitons.

tive of the ponderomotive force. Under these condi- The one-dimensional nonlinear Schr3dinger equation

tions, the envelope approximation to the Langmuir has been used extensively
,9 as a model for nonlinear

wave equation leads to a Schr6dinger equation with cu- behavior of deep water waves. The recurrence ob-

bic nonlinearity. served by Yuen and Ferguson' in this connection may
be closely related to pulsating solitons and breathers.

This paper is concerned with the effects of spatial
dimensionality and collisional damping on solutions to Other observations in the present paper have to do
the nonlinear Schr6dinger equation for a vector field with the competition between modulational instabilitiesand collapse, and with comparisons between the virial

theorem and similarity solutions. A number of these

-Present address: Institute of Mathematical and Physical observations are based on similar phenomena in non-

Sciences. University of Tromsf, Norway. linear optics,' in which a laser beam undergoes total
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sell-focusing at moderate intensities, and at higher and subtracting the complex conjugate, giving the con-
intensities break-up into filaments. tinuity equation

We have derived a virial theorem for the nonlinear a 8 2

Schr6dinger equation with constant damping included. at + " (5)
In two dimensions, this results in a dissipative thresh-
old for direct collapse, enabling us to predict the role

of collisional damping in Langmuir collapse. 9, = (1/2i)(S"V,S.- S,.Vp*). (6)

The plan of this paper is as follows: In Sec. 11 we Energy and momentum conservation can be derived
treat the nonlinear Schr6dinger equation using general from the following (D+ 1)-dimensional energy-momen-
virial theorem arguments. In Sec. III we explore the tum tensor
evolution of initial Gaussian wave packets in one, two,
and three dimensions. Section IV is devoted to the ef- Tov= Z (7)
fects of damping on collapse. Section V deals with self- I t
similar behavior, both in general, and for the special where the indices A and v can assume values 0,1.
case of three-dimensional spherically symmetric col- D, and x0 - t, ,xD) r.
lapse of a scalar field. In the Appendix we study the From the Eder-Lagrange equations (2), and the fact
conditions of validity for the nonlinear Schr~dinger that £ does not depend explicitly on time and space
equation model of Langmuir collapse (i.e., the adia-
batic ion and electrostatic field approximations). (translational invariance), we easily verify that

VOT"P 0 =01,..D (8)

1I. CONSERVATION LAWS AND VIRIAL THEOREMS This is a set of (D+ 1) continuity equations, one for en-

The most general way to derive conservation laws ergy
for field equations is to exploit the invariance proper-
ties of the corresponding Lagrangian. The Lagrangian - + V.Q=0, (9)
density for Zakharov's equations (see the Appendix) is at

given by Gibbons et al." In the limit of electrostatic where the energy (Hamiltonian) density 3C and the en-
waves and adiabatic ions, their expression reduces to ergy flux vector Q are defined as

'+(S,,*)2. (1) 5C- -T 1= [V.S)(V,6*)-(SMS:) , (10)

(We employ the usual summation convention over re- Q.= -T. 0 = -Re(V.S,*S.), A =l ,.. .,D, (11)
peated indices.) From the Euler-Lagrange equations and one equation for each momentum component

6 L 5L.. .0,8" -+-v(2,,)-9 ,,v=l,... D, (12)

the nonlinear Schr~dinger equation follows
where the momentum density 4 and the stress tensor

ii + !V 2
8 +s j$1 = 0. (3) T, are defined as

Here, we have used the variational derivative of the La- T v=1,...,D (13)
grangian L= f £dr' rT= Re(V&*V&,)+£6,M, A,V=1,...,D. (14a)

-U = 8.2l _V (4) Note that the momentum density 61. is here identical to
the current density S. in Eq. (6). The time derivatives

Note that we have treated S, and S* as independent gen- in £ can be eliminated by means of the nonlinear Schrb-
eralized coordinates. Variation with respect to S. dinger equation (3); and by applying the relation VV 5
gives the coLiplex conjugate nonlinear Schr~dinger = V'S (valid for electrostatic fields; see the Appendix),
equation. The relation between the dimensionless units we find
employed here and the physical units is given by t
- ot, r- kr/"3, and I21 - 1$8 1/[321rlo(8+0,)]. The £2--H6'la+V'Re(*V'8)], (15)
electron plasma frequency is co,, the Debye wavenum-erethebackgrou plasma densitycy is w,,and the Debywhich inserted in Eq. (14) gives T, in the simple former is kD, the background plasma density is n, and the o od a n ihl o 6
electron and ion temperatures in energy units are ol
and O. 5 is the envelope of the electric field, 8(r,t) =R ,S,, J1 14= R e[8 exp (-iw t) ]. r2 e[ V ) ] +[ * +  (R e $V .8 )].

(14b)
The conservation laws for plasmon number, energy,

and momentum follow generally from Noether's theo- The three continuity equations can be integrated to
rem 2 and the invariance of the Lagrangian under a yield the following conserved quantities, assuming lo-
gauge transformation 8-8 exp(i4), under translation in calized fields: N= f IS ldDr, H= fxdDr, and P
time, and under translation in space, respectively. Al- = fa'dyr. They can also be used to explore the parti-
ternatively, they can be obtained directly. Continuity of cle-like behavior of a wave packet by defining the av-
plasmon number density, I 8(r) 2, follows directly by erage of any quantity using the normalized plasmon
multiplying the nonlinear Schr~dlnger equation with 8* number densi.ty IS 2'/N as a weighting function
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(f(r)) iS_(r) dor" for neglecting electromagnetic effects.) We note sev-
J f eral features of this initial wave packet: It is purely

If we multiply Eq. (5) by r and integrate by parts, we electrostatic, since it is the gradient of a potential.
As long as Ak -ko, the field 6 points essentially in the

find the Ehrenfest theorem for the velocity of the cen-
troid coordinate of the wave packet

a,(r)=S/N=P/N= const. (16) &o I ma=(t=0)Hko4o, (20c)

where 0o is assumed to be real and constant. If we
Similarly, by Eqs. (5) and (12), and again using a = 6, evaluate the mean packet momentum density S/N, we

we can prove the following virial theorem for the time find
evolution of the mean-square spatial deviation (Orfn
f(} IS 12N) Ir - (r) I'd'r: SIN= koJ + 0(,E2)]1 (21)

2O2 = 1 do,- (17) The factor D in the exponent of Eq. (20a) is equal to the

N N number of spatial dimensions considered. It is in-
cluded to assure that Ak 2 is indeed the correct mea-

From Eq. (14) we find T,, = 2C+-(2 - D) sure of the k-space width of the packet: To justify this
+ (D/2)v" (Re6*V" 6), which, inserted in Eq. (17), gives interpretation, we note that the Fourier transform of

(
2
(6rl

) 
= 2A + (2 -D)(I6 12), (18a) (20a), (with D in the exponent), leads to the correct k-

where space width measure, namely,

A =-2H/N -I=N (18b) N- 18 lk: k - (Ak) , (22)
is a constant of motion. By integrating twice in time, f usin iequ (2t (k)

2
, (22

wtime, after using the inequality 4k <k,.we get

f t'. The physical quantities and invariants defined in Sec.
(6

2
)=At

2 +Bt+C+(2-.D) fdt' dt"(6 12) , (19) II can be evaluated for the initial field of Eq. (20), and
0 expressed entirely in terms of &,, Ak, k,, and D. For

where B 8,(6r2 , o and C= (6r'),.o. This is the result of example, to zero order in e,

Goldman and Nicholson. 6 If the number of spatial di- N 2 2)D/2,

mensions D >2 and the conserved quantity A < 0, it fol- N= 1(Dr/2&k (23)

lows that (672) will collapse to zero in a finite time. (6r2) o (D/2Ak) 2 , (24)
This general result is based on the assumption o; adia- (i8 2)z 8g/2DI2. (25)
batic ions and electrostatic fields, both of which are
eventually violated when (6r2) becomes sufficiently The invariant A, defined in Eq. (18b), is

small (see the Appendix). A S 12_Ake 2 (26)

Thus, in the late stages of the collapse, the collapson A-N=- N -- k -2 (26)

may radiate ion-acoustic waves as well as electromag- The threshold for collapse for D= 2 (two dimensions) is

netic waves. If these effects are not sufficient to stop A<0. This is also an upper bound on the three-dimen-

the collapse, it will finally be stabilized by Landau-
damping when (672)/2 becomes of the same order of sional threshold:

magnitude as the Debye length AD. (We believe wave- 0o= 2D/,k. (27)
particle interactions to be the dominant stabilization For our Gaussian initial packet, the integration con-

mechanism.) The useful form of the virial theorem for stants B and C in Eq. (19) are easily evaluated. We

the nonlinear Schr6dinger equation depends on the iden- find B= 0, and C= (D/2)3/ak 2 . From Eqs. (19) and (26)

tity S= P. This identity is not satisfied by the more
general Zakharov's equations. Hence, a useful virial

theorem that can describe the late stages of a collapse t'= IC/A I1/2= D/2Ak2(p- 1)/ 2 . (28)

has not been derived. At the present time, the most This is the virial theorem prediction of the collapse
fruitful approaches to these problems seem to be nu-
merical integration of Zakharov's equations and parti- time for D= 2, and an upper bound on the collapse

cle smulatons.time for D= 3. The quantity P is defined ascle simulations.
P=,582/2 D I 2Ak 2. (29)

I1. GAUSSIAN PACKETS When D= 2, P is the ratio of field energy to threshold

A. Threshold and collapse time -energy. We shall use P in our treatment for arbitrary

We treat an initial Langmuir wave packet of the form D, although its interpretation as wave to threshold en-
ergy holds only for D= 2.

8(r, t = 0)= -V [o exp(-Ak'r/D) exp(ik." r) J, (20a)

where we assume that the k-space width of the packet, B. Gaussian approximation

Ak, is much less than the wavenumber k,: In general, as a packet develops nonlinearly, it does

Ak/k, -1. (20b) not preserve its Gaussian shape. If P is much greater
than one, the packet may be unstable against "break-

(In the Appendix we shall see that m - I is the condition ing-up" into smaller packets (modulational instabil-
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ity' 3 ). One-dimensional "breathers" may have many v
spatial oscillations when P- 1. 

In three dimensions, even very close to threshold,
self-similar behavior 2 develops asymptotically as the 1

collapse proceeds. Using a scalar nonlinear Schr6- -

dinger equation, Budneva el al. 2 have shown that an in- -0.5
itial three-dimensional Gaussian packet with P I
soon develops such a feature. In Sec. V we show that P<1
such a feature also develops when P_ 1 (near thresh-
old). A quickly collapsing core of similarity form rises
at the center of the packet. This core becomes singu- FIG. 1. Pseudo-potential V0) for D= I (i - r 2)/5r 0).
lar, and its width goes to zero for nonzero (Or'). How-
ever, the threshold for collapse and the early time be- below the limits of validity of the nonlinear Schr6dinger
havior of (Wir2) are well described by the virial theorem equation as given in the Appendix.
methods we are about to describe.

Assuming that (P - 2) is sufficiently small, our theory
Assuming that the packet remains approximately gives pulsating solutions corresponding to the bound

Garulsand aith closu r cheme fr Theq ()ma ie wstates near the bottom of the potential well in Fig. 1.
formulated with D= 1 or D= 3. The problem is with (x 2 ) oscillates periodically, and, by the invariance of
the quantity ( S z), which isarol an invariant. We shall f drIS J', so does JS ,.
make the (Gaussian) approximation that

2) =QN(r-/ (30a) This behavior appears to be related to certain nu-
merical solutions obtained by Satsuma and Yajima,7

where Q is assumed constant. We may evaluate Q at t who apply the inverse scattering method to solve for
= 0, using Eqs. (23)-(25). To zero order in 4, the re- the time evolution of an initial wave packet of form

su&t is S(x, 0) = a sechx. (33)
Q= (D4W)1 

2. (30b) When a= 1+ e, and c « 1, they also observe oscillations

Inserting Eqs. (30) into the time-evolution equation (19) in I 1 but these oscillations slowly relax, presum-

for (5 ) enables it to be integrated by potential theory ably due to "continuum" radiation of Langmuir waves.
methods. A first integral is We do not observe such damping of the oscillations,

+(f = (fe). (31a) probably because continuum radiation is excluded by the
assumption of localized fields in the spatially Gaussian

Here, E is an arbitrary integration variable, and the closure approximation.

potential V() is given by The validity of our treatment of periodic pulsations
V(4)= -2A4 - 2NQ4( 1'- /" 2 . (31b) of one single wave packet requires that the packet not

Equations (31) are convenient for studying effects of break up due to secondary instabilities in a time short-

dimensionality on the evolution of solitary wave pack- er than the period. The possibility of such a break-up

ets. Calculations of characteristic times, such as pul- is not accounted for in our Gaussian model. The period

sation and collapse times, are easier if we express the is obtained by integrating Eq. (31) using Eq. (32),

potential in terms of the normalized coordinate il-: t/ T = F(P)/ I. 12 , (34a)

41.0, where 4.= (D/2Ak) 2 is the initial mean-square
spatial width of the wave packet where the function F P) is defined by the integral

V=(D/2)[(P-1),-Pr-D/IJ. (32) FP) =- .- , [ ( - (34b)

Note that the potential for the initial packet (ij= 1) is Here, it is the turning point. The positive sign is for
V( Q. ) = -D2/2 and, hence, it is independent of the in- P> 2, (71c < 1), the negative sign for P> 2(iit > 1). F(P)
itial parameters. We study the implications of the po- is plotted in Fig. 2. The period predicted by our Eqs.
tential of Eq. (32) for various cases: (34) is in good agreement with the numerical results

D=1. For A<0, (P>1), the potential has the con- exhibited in Fig. 2 of Ref. 7. As P- 1, the period

cave shape of Fig. 1. For a Gaussian packet the poten- goes to infinity.

tial has a minimum at ?, =- P) and a zero point The growth rate of secondary instabilities such as
at 1, = (1 - P'=) 2. This allows bounded, oscillating so- modulational instability and parametric decayS is y,
lutlons about the equilibrium point %. For P= 2 we - )&,2. If we letf =-/,I be the number of c folding
find that mo= 1, which is the initial coordinate, thus needed for the noise to grow to nonlinear levels, we
giving the stationary equilibrium solution correspond- get
ing to the well-known nonlinear Schr6dinger equation
soliton S = a sech(ax) exp(i a 2t/2). Since '1 > 1 for all
P> 1, and l-,1 -as P-o, it is clear that full collapse The value of f depends on the noise level from which
never occurs. For sufficiently large P the oscillations the unstable waves are amplified, however, even very
about ilo will be so large that the minimum il will be conservative estimates give f,, 10. This means that
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10 -8.5 <

FIG. 3. Pseudo-potential V(71) for D=3 (q-- 0r)/5r)0 ).

5-
given by Eqs. (27) and (28), respectively.

D=3 (see Fig. 3). The potential for A<0 grows
monotonically from minus infinity at = 0, approaching

0 _ _ __ _ the straight line -2At as -- o. Consequently, col-

0 5 10 15 20 P lapse occurs for all initial wave packets, and an upper

bound for the collapse time is found by considering col-
FIG. 2. Functions F(P) and G(P) versus P. lapse along the linear potential -2A4. This gives the

expression of Eq. (27). The convex shaped potential ap-

breathing and break-up times are of the same order of pearing for A> 0 has an unstable equilibrium for %jo

magnitude for 2 <Piz 102. Break-up instabilities are [2(P' 1)[2/ 3. Collapse for a Gaussian wave packet

effective only if the packet size is larger than the occurs when T1> 1, or

shortest unstable wavelength: (5r 2)" 2
- 1/(2Ak)>X, P> g. (36)

= r/i &1 or, equivalently, Pz 2,r 2 . 28. If this The threshold condition P> I for D= 2 corresponds to

threshold is exceeded, the wave packet will break up the threshold condition o'> 2 k', while Eq. (36) for D
into smaller packets on a time scale of the same order = 3 requires 6oI> (21/2/3)4k2. This means that theas the pulsation period. We do not expect our theory threshold is slightly lower in three dimensions.
to apply under these conditions.

A different way to view one-dimensional break-up The viriaf theorem prediction for the collapse time,

behavior when P>> 2 is provided by the work of Sat- valid for all P> i, is easily obtained by integration of

suma and Yajima.7 They also studied initial packets of Eq. (31),

the form given in Eq. (33) for a= 1,2, 3 (see their Fig. t,= G(P)/ 12, (37)
1). The case a= I corresponds to the usual single sol-
iton, but a= 2 and 3 correspond to breathers, which where G(P) is defined by the integral
are exactly periodic pulsating bound states of two or
three solitons. The case a= 3, in particular, shows -P=_3 d (
markedly non-Gaussian behavior, as the packet splits G(P) J p-1_(p_1)-1/(38)
into two and three narrower packets in the course of
its periodic behavior. (Similar behavior was also ob- which is plotted in Fig. 2.
served by Yuen and Ferguson,8 in what they call "com-
plex" recurrence.) If we set the area under our Gaus- The collapse time predicted by (37) is an upper limit.
sian packet equal to the area under their sechx packet, We shall see in Sec. V that a self-similar core can col-

we obtain a relation between our P and their a lapse faster than (6r2).

2/a. The threshold condition for break-up, that the packet
P= ra . (35) size is larger than the smallest unstable wavelength,

From this we see that a= 1 corresponds to Pa 2 in the now becomes P> V(iT/3) 2= 1.6, while the ratio
single sltnresult. The case a= 2corresponds toP lt=G(lf,39

= 9, which is a somewhat lower bound for validity than tc/ts - G(P)/f, (39)

found from consideration of modulational instabilities. is smaller than unity only for 0.7 KP 10. Hence for

For P< 1 (A> 0), the potential in Fig. I is monotoni- large P (P> 10), a wave packet should break up into

cally decreasing for all il>0, so that any localized smaller packets before it has had time to collapse. If
wave packet will disperse spatially with time. Break- the smaller packets have P in the range where t/t, < 1,

3 up, recurrence, or collapse will never occur, they will collapse. This succession of break-up and

1) = 2. In this case, the term containing ( I' van- collapse has been referred to as indirect collapse.6

ishes, and no approximation is necessary in the virial Similar phenomena are well known in nonlinear op-
theorem. The potential V(4) is linear with slope -2A, tics." A nonlinear laser beam with P> 1 breaks up into
giving collapse for A< 0, and spatial dispersion for A intense filaments, whereas when P is closer to one, the
>0. Threshold for collapse and collapse time are beam self-focuses as a whole.
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IV. EFFECT OF DAMPING ON TWO-DIMENSIONAL
COLLAPSE (Sr2)/( r 2)-

We next introduce a local damping term in the form
ion the left side of the nonlinear SchrSdinger equa-
tion (3). The conservation laws, based on the integrals 2 / 0.4

of Eqs. (5), (9), and (12) are modified in the following /
manner:

(&,+2y)N=0 or N=N 0 exp(-2yt). (40)

Since there is no driver, the plasmon number decreases 5.0
exponentially with time. The momentum behaves the
same way 1 2 3 4 5

(at 2y)P=0 or P=S=S0 exp(-2yt); (41) FIG. 4. (6r )/(r) 0 versus time T for L=0.15, 0.4, and 5.0.
Curves are dotted for times when N has damped by more than

however, the energy H has a more subtle evolution one order of magnitude.
equation

(at+ 2)I= N( 8 I). (42) -y'. This may be of little interest, however, because

An initially negative H may become positive if the ef- IS I 2 has damped to a small value by this time and the

fective source on the right side is large enough. Suffi- packet is linear. In Fig. 4 we show some typical curves

ciently large dissipation causes the nonlinear refrac- of (r2) versus time, for various values of the damping.

tion term (- IS 14) in H to decrease faster than the dis- Each curve is shown as a dashed line after the plasmon
persion term (_ IV. 8 12). Hence, H and A eventually number N has decreased by one order of magnitude.
change from negative to positive, and collapse stops. In Fig. 5 the quantity 0=x, /x(0) has been plotted
The virial theorem takes the form (for D= 2) versus a for various P values. These plots show that

(&, + 2Y)2( ) = 2A. (43) collapse is stabilized for a> a,= 3. Thus, we have
noncollapsing solutions for v>vc, where the critical

Assuming an approximately Gaussian wave packet, Eqs. damping rate v. is given by
(30) imply that (I 2) = (D2/r2S)12(6r2)-./2No exp(-2,t),
which can be inserted in Eq. (42). We restrict our YC (1 -P')/(3tC). (49)
treatment to the case D= 2 for which Eq. (42) may be
written in the form If the collapse proceeds too far before stabilization oc-

curs, the nonlinear Schrdinger equation breaks down
8,A = (v/w)(NI(6r)) exp(-2yt). (44) and results based on the virial theorem are not reli-

In Eqs. (43) and (44) we make the following substitutions able. Initial wave packet conditions for which the non-
linear Schr6dinger equation remains valid throughout

T= t/., v = Ytc, (45) the nonlinear evolution are given in the Appendix.

exp(2vT) ( 2
) t 2

X()=2t,(Pv)' 2 (O T -P-A (46)

where t,, is the collapse time of Eq. (28). The resulting X___
equations are X(0)

8,
2 x=yexp(2yr), 8,y=x " , (47)

with initial conditions P- 43 2 1.5

x(0)= 1/2 a 1/2, x'(0)= Va" / , (48a) 1.0

y(0)=_ j21 , a-v/(1 -P'). (48b)

This initial-value problem has been solved numeri-
cally for various values of P and a. For a given P,
there exists a critical value a,(P). For a< a,, the 0.5
packet collapses completely. For az a,, the variable
x defined in Eq. (46) decays to a minimum, x,,,, and
then increases. The packet size (Or') asymptotically
approaches a constant, due to the balance between lin-
ear dissipation and linear dispersion. This can be seen
from Eqs. (47). As x- , y goes to a constant, and x
approaches exp(2yt). From the definition of x, this im- 0.2 0.4 0.6 0.8
plies that (brz) approaches a constant. From Eq. (43), a
we see that (Or2 ) -A/2y 2. In the asymptotic limit, only
linear dispersion contributes to H, so A - (Or' - ' [see FI;. 5. 0 = i,,,/ () plotted versus a for P- 1.5, 2, 3, 5. and
Eq. (26), for example), and, consequently, lim,-.. (Or2)
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V. SELF-SIMILAR BEHAVIOR cause ip(r', t) still contains the nonsymmetric phase

A. Scaling laws factor. This means that the wave packet has a nonzero
momentum, P'=N'ko. However, the momentum can be

By making the sell-similar substitution",2  removed by the following gauge-frame transformation:
8 = (t- t)"l / 2R(u), u

= (t - t)-
' r (50) 0(r', t) = 0(r, t) exp(-ikot/2 + ik o " r') , (57)

in Eq. (3), we get rid of the time dependence r= r' -kot, (58)
-li(l+ u" 8.)R. 12 B=R. IR 12R= 0. (51) under which the nonlinear Schr~5dinger equation and the

At collapse threshold the nonlinear pressure term must constants of motion N and A [see Eq. (18b) ] are invari-
balance the dispersion term; hence, for the ratio of ant. The momentum transforms as
field energy to threshold energy we get P=P'N'k0 =0,

P_ IR ~ (Rl_,RA) 2 , (52) so that A(r, t) does not contain the phase factor
& .'R i exp(ik o" r), and it is possible to impose spherical sym-

where Au is the half-width of the function R(u). As- metry to obtain Eq. (55).
suming that the first term in Eq. (51) is of the same
order of magnitude as the nonlinear term (which is ob- Equation (55) was solved by Budneva et al. for an in-
viously true for P>> 1), we find that R..= 0(1). From itial Gaussian shape corresponding to P= 8.5 (threshold
Eq. (50), it then follows that is P= 3). We solve it for several P values, both below

and above threshold, and the results can be summed up
t c =0( 16 1-2). (53) as follows: For all P> 3 a collapsing "core" develops

whose collapse time is less than one-half of the col-
This always turns out to be a faster time than the pre- lape time derived from the virial theorem under the
dicted by virial theory (an example will be given). Gaussian approximation.

The self-similar solution in Eq. (50) has some pecu-
liar properties which might tend to obscure its relation However, the collapse threshold condition, P= 3, ob-
to arbitrary initial-value problems. For example, its tained from the virial theorem with the Gaussian clo-N invariant is infinite in three dimensions (although not sure approximation provides a surprisingly good cri-N inarint s ifinte n tree imesios (lthughnot terion for core collapse. When P < 3, the corona dis -
in two). To see this, we note first that Eq. (50) implies tenon for crols hnPial, th cron di-perses ((0r } grows monotonically), in agreement with

N= (t, _.)
=/ 2  d3U IR(u) 12. (54) virial theorem predictions. Just below threshold, how-

ever, we have the situation of a collapsing core co-ex-
However, in the limit of large u, the last two terms in isting with a dispersing corona, indicating that core and
Eq. (51) are negligible, and R-u-1. Hence, the integral corona can behave independently of each other.
in (54) diverges. Indeed, this must be the case, in or-
der for N to be time independent. However, in any in-
itial-value problem of physical interest, N is always I 2

finite. What role can self-similar solutions play in ar- 101
bitrary initial-value problems? This question is ad-
dressed next.

B. Numerical studies of three-dimensional collapse 12

We support our discussion with numerical solutions
of a scalar nonlinear Schrtdinger equation in spherical 10
symmetry

i, 1 t /-1.211
,- 0 (55) e ,

with boundary conditions

6

This equation follows from the vectorial nonlinear 4
Schr~dinger equation (3) under certain conditions. As-
sume that the electric field envelope E has a rapidly
oscillating spatial phase factor exp(ik o- r), where ko, is 2
much larger than the k-space width Ak of the spatial
envelope. Under this assumption the electric field can -t0
be represented in terms of a scalar function 0(r', t): 0 I I r

E(r',t)= V[(r',t)/k,1i i(r',/)k,. (56) 0 2 4 6 8
FIG. 6. Initial Gaussian (t- 0), and nearly collapsed solution

This immediately gives a scalar nonlinear Schrkdinger with a core of sinillarity form (i- 1.2). lotted curve is the so-
equation in 6, but it is not spherically symmetric be- lution at I - 1.2 in the Gaussian approximation.
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In Fig. 6 we illustrate a solution to Eq. (55) (the factor happens because Eq. (59) was obtained by assuming Q I
- in the dispersion term has been scaled away, by is constant and equal to the value given in Eq. (30b).
stretching r by a factor ', in order to correspond to In the actual numerical solution, Q has increased by a
the equation of Budneva et al.). Figure 6 shows the factor of 2 by the time t= 1.2, and it is this non-Gaus- I
build-up of the core for P= : (two times threshold). sianity which is causing the slight lowering of the (6r 2 )
The intensity is displayed at time t= 1.2. The dotted points.
curve shows the corresponding shape if the packet has U
remained of Gaussian shape and collapsed in accordance The virial theorem prediction for the collapse time

with virial theorem arguments. The steepness of the [Eq. (37)] gives t- 3.2. However, the collapse of the

core is of much less consequence when we recall that core is seen to occur at tz 1.33, by arguments we shall

moments and invariants are weighted by r2 when three- advance shortly. At this time (6r-*) is nonzero and
dimensional integrations are performed. comes from a tail which remains even when the core

has gone singular. This time is indicated on Fig. 7 as

For example, at early times, the virial theorem pre- t,('. The significance of the virial theorem predictions
diction of width (Wr2) is well satisfied. If we assume of (or2) beyond 4 ) are not clear. The nature of the
that problem will be summarized later.

1 - (6r2 )!(6r2 )o «1, In Fig. 8 we verify that the field is self-similar at r
then the virial result, Eq. (31), may be integrated ana- = 0, and determine the collapse time by extrapolation.1ytically to yield According to the scalar-field version of Eq. (50), if thefield is sell-similar at the origin, then 0(0, t)

(8r) = (0o(1-at ), a=-(P-1)(/18P2). (59) =R(O)(t -t)" 2 . Hence, in Fig. 8, we have plotted

This curve is plotted in Fig. 7 for P= L (82= 2.39). I1(0, t) '2 versus time and have found the expected
Superimposed on it are the results for (r

2
) obtained by straight line, with [ (0, t c) 12=0 at t " = 1.3265.

spatial integration of the numerical solutions to (55), at Of more interest is the question of the spatial extent
various times. By the time t= 1.2 (corresponding to of the self-similarity. Consider the field at two times
Fig. 6), the non-Gaussian character of the core is t and t 2, such that t1 <t 2 <t " . If the field is self-simi-
causing the numerically determined (br 2) values to fall lat at t,, with respect to the later time t2, then it must
about 1% below the virial theorem predictions. This have the form *,,(r, t,) which is related to 0(r, 02) by -O.(,t,) = a r/ .,t2),I

W t) 12"
12, ,, =- \ .(60)

1

14
.96

12

.94
10

.92

6

t (S)
.90 4

2
.88 t

0 .2 .4 .6 .8 1.0 1.2 1.4 0 CS t

FIG. 7. Spherically symmetric numerical determination of 1.300 1.310 1.320 tC 1.330
Or (0 marks) as a function of time, versus virlal theorem
prediction [solid curve-see Eq. (59)1, for the case P= . FIG. S. ((0.t)1"2 versus time. showin self-similar approach
Ill) 1.3265. to singularity in 1 (0.t)12 at rv=0, and 1,) = 1.3265.
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FIG. 9. i$i2/I4 ,I-las a functionof rat t=1.2, 1.3, and 1.31. FIG. 10. N7 =47r fo' drr 214,12 as afunctionof rfor t=0, 1.2,
This exhibits the relative precentage difference between I ,2 and 1.31. The radii at which I1t2 is equal to its half-maximum
and 10"12. The latter is reconstituted from I (t= 1.3220)12, are shown on each curve as a dot. The cutoff points for devia-
under the assumption of self-similarity. tion from self-similarity by more than 25% are shown by ar-

rows.

In Fig. 9 we have plotted the quantities The important issue of what happens to the entire tail

1I 12/I,.. 10-1. (and to (6r2 ), after the three-dimensional collapse of

for t2 = 1.3220 and three different values of the earlier the central peak at time t(, cannot be resolved within

time t. This represents the percent difference between the context of the present theory. A proper resolution

10 12 and the self-similar solution, as a function of radi- should take into account the inevitable break-down of

us, for the three earlier times. At times later than the Schr6dinger equation and the need for more physical

1.30, I 12 is self-similar to within 15% up to radii of processes. In the Langmuir wave application, this

about r= 3.7. At these times the half-width of the peak means the inclusion of a dynamic ion response and,
occurs at r< 0.5, so a relatively long self-similar tail possibly, energy transfer to electrons. The criteria

is observed. for neglect of these physical effects are described in
the Appendix.

How much of a contribution to the "number invari-
We note that the non-Gaussian character of collapse

ant,"appears to be a three-dimensional phenomenon. In two
tion?dimensions, even the self-similar solutions appear
plotted the volume integral of I 2 up to radius r, as a more Gaussian, and are not associated with an infinite
function of r, N invariant. Our results on pulsating solitons in one

N 0"drr"I4(ri) (61) dimension and on the effects of dissipation in two-di-
Ni, , mensional collapse should not be affected by the non-

Gaussian character of three-dimensional collapse.
at the initial time and at two later times. Note, N. is
the plasmon number invariant, N, here equal to about
14. The arrows on the curves at I= 1.2 and at 1.31 in- ACKNOWLEDGMENTS
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APPENDIX U- VO (A)

Here, we briefly review the plasma physics condi-
tions which must be satisfied for the validity of the corresponds to the packet velocity [note, with the help
cubic Schradinger equation (3). We begin with a more of (AS), the current density (6) may be rewritten as

general set of equations, the Zakharov equations, which S = u IS I2 . In order to reduce the inequality (A3) still

have been used extensively 4 to describe nonlinear further, we consider a wave packet which is centered

Langmuir and electromagnetic wave evolution about wave vector k, and has a k-space width ak:

iI+!VV--(C2/2)VxVxS- 6n8=0, (A1) A-A,exp(-r 2&k2), u=k o . (A8)

(C;28-_V2)6= V2 16 12. (2) From (A6) we see that the various terms in the stress
tI (A 2) tensor are then of the orders

The units are the same as described after Eq. (3); in
addition, On is the low frequency electron (or ion) den- [

sity response, in units of 2no, where no is the average Hence, (A3) and (A4) yield the following inequality for
background density. The parameters C and C8 are, the adiabatic limit
respectively, the speed of light and the ion-acoustic
sound speed, in units of fv*, where v. is the electron [

thermal speed (0/m.) / 2 . There are five conditions for where r = (1/3)(1 +1 8/8 8 ) and y, is the usual ratio of
the validity of the Zakharov equations (Al) and (A2): ion specific heats. The condition on the wavenumbers

means essentially that the packet velocities (or group
(i) (kkD) 8

< 1 1 (dipole approximation); velocity, in the limit Ak <ko) must be much less than
(ii) <0s << w.~ (slow-fast time separation); sound speed, so that the ions can follow the packet
(iii) neglect of wave-particle interactions (k/kD « 1, spatial translation. The condition on the amplitude,

61 > 0 d; IA 1, means that the collapse speed of the packet must
(iv) quasi-neutrality; also be much less than sound speed. Both conditions
(v) linear ion response to ponderomotive force (On are theoretically met, for example, in the case of the

<< no). type I solar radio emission. . 5

We shall be concerned mainly with the conditions for It is also useful to examine the adiabaticity criterion
two further approximations, which lead to the cubic
Schrdinger equation. These are, respectively, the (A3) for the case of self-similar solutions of form (40).
electrostatic approximation (V x 8 =0) and the adiabatic Once again, if (R)m. and (O8R), are considered to be
ion approximation [c;'a8 1 << V'Sj in Eq. (A). of order unity, the adiabaticity condition (A3) becomes

[s II<< C,2, for nontranslating similarity solutions.
We begin by assuming the electrostatic approxima- Next, we show that the condition for electrostatic ap-

tion, and then show that this approximation can be well Nxtio in the cnditis erely
satisfied in the adiabatic limit, provided that the packet proximation in the adiabatic limit is merely
also satisfies certain criteria in k space. Ak < ko, (All)

With Vx 8 = 0, it follows that VV" 8 = V'I, in Eq. for the electrostatic approximation. Here, we imagine
(Al). In the adiabatic limit, the first term on the left an initially pure electrostatic packet (such as may
side of (A2) is neglected in comparison with the second arise from a beam instability, for example',"), cen-
term. For localized fields, (A2) then integrates to On tered around the wave vector ko. As the packet col-
= _ [s j2, and (Al) becomes the cubic Schr~dinger equa- lapses, its effective k-space width, Ak, increases. As
tion. An a posteriori examination of the terms on the long as Ak remains much less than ko, the term C2V
left side of (A2) then gives us the necessary inequality XVx 8/2 on the left of Eq. (Al) may be ignored.
for the adiabatic limit

The demonstration consists of two parts. First we

JC.a-Js2 j 2
1J )

2J (A3) require that the transverse part of & be much smaller
than the longitudinal part. This has been shown in Refs.

From Eqs. (5) and (12), and the identity of current and 2 and 15, where 1 1/ 1, 1 is shown to be of order C"
2.

momentum densities for the Schr/dinger equations, we Given 16 1 >- 18 , we may take the longitudinal and
find transverse parts of (Al) and write them approximately

as

is, +_ V2&,_(6ns,),= 0 '  (A12)
The stress tensor is given by Eq. (14b). It may be re-
written in a useful form by expressing the field in terms is + 2C'

7
' 8, -(Ons,) = 0. (A13)

of an amplitude and phase:
Note that if we can demonstrate I6n., It -< 16nI, it will

8=Aexp(ie), A, 9 real. (A5) will then follow that the third term in (A12) can be

Then written approximately as (MS,), (OnS,)t = 6n6,, and
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Numerical studies of radiation at 2u from a Langmuir envelopep

collapsing adiabatically in three dimensions show the emissivity

is higher than expected. A volume emissivity obtained from an

approximate density of collapsing packets leads to favorable

comparisons with measurements of type III solar radio bursts.
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I. INTRODUCTION

It is now believed that a type IIl solar radio burst is

associated with an electron beam launched into the solar wind

during a solar flare, leading to electromagnetic emission at

the fundamental and harmonics of the local plasma frequency.
1

Gurnett and Anderson have measured the volume emissivity of

harmonic emission at 1/2 A.U.
2

Recently, Goldman et al. proposed a model for the emission

based on the following scenario. An energetic beam of elec-

trons launched into the solar wind excites Langmuir Waves.

Computations 3 indicate that a Langmuir wave packet grows up to

a point where the spatially averaged energy density W (normal-

ized to the thermal energy) in the packet exceeds the threshold,

Wth' for direct collapse.4 '5 The collapse time is infinite at

threshold and decreases rapidly as W increases above Wth. It

is found that typically a packet continues to grow in

strength up to about twice the thresold energy density before

there is noticeable evidence of spatial collapse (and broaden-

ing in wave vector space). Once the packet becomes broad

enough in k-space, it should be kin(matically possible to couple

two Langmuir waves into a photon at twice the local plasma

frequency.

The physics of Langmuir collapse is decribed by the Zakharov
4

equations. The general solution of these equations is unknown.

However, it is known that they possess certain invariants. 4 ,5 ,6

4,7 ,8

It is also known ,78that in some cases the solutions approach
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a self-similar form over a region of space. There are two

distinct stages of early collapse, the subsonic or adiabatic

stage (described by a cubic Schr6dinger equation), and the

supersonic stage. In the subsonic stage the ions respond to

the ponderomotive force adiabatically, while, in the supersonic

stage, ion inertia plays an important role.

In Ref. 2, using the plasmon number invariant, an upper

bound, and using a supersonic self-similar solution, a much lower

estimate of the emissivity of a bunch of collapsing packets

was obtained. It was argued that most of the harmonic emission

would occur in the supersonic stage.

In the present work we examine the adiabatic stage

numerically. We find that an adiabatically collapsing wave

packet can lead to emission in the subsonic stage which is

significantly higher than was thought possible. Due to subtle

stationary phase effects, this can occur for packets whose

width Ak is still smaller than ,p/v beam. With reasonable

choices for the number density of collapsing wave packets,

we find levels of emission consistent with the experimental

estimate1 for the volume emissivity.

II. EMISSIVITY OF A LANGMUIR WAVE PACKET

The emissivity is given by

2 T/2
dP _ cr lim 1 dt E-B

4 T

wT/2

where c is the speed of light, E(B) is the electric (magnetic)

.~~~~ ~ ~ ~ .
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field, and r is the distance between the point of observation

(where ExB is evaluated) and the origin. In terms of the

current, J2p' at twice the (local) plasma frequency, p

the emissivity is,

r
lim 12 n2d(14dO c 2 T k ' wi, (Kr, w) 2 sin2

where r is the unit vector directed towards the point of

observation, i is the frequency variable in the temporal Fourier
transform of the current, K [ 2_ 2 /c

= -w (r)] c, and e is the angle

between J (Kr,,) and £, i.e.,
-2w

p

sin8 2w P(K%, w)x.£I

We now make use of Zakharov's fundamental simplification 4 by

expressing the current as a slowly varying envelope j 2w and a
p

rapidly oscillating phase:

-iil t

J2w(Krwo) J2U e + c.c.
P p

where w is the photon frequency. The emissivity can then be

expressed as
2

Kooi2 T/2
K w sin 20 /

d~ 8rcT T/00 2 lim - ~, dtlj2  (Kor,t)j (2)Q8 c 2  T -+0 "
-T/2P

where Eq. (1) has been simplified by taking an "average" angle

G0, wavenumber K0 , and frequency uO out of the integral, where

KO = Iwo2 - p 2 (r)] /c  (3)
0 p
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This procedure should be valid as long as the direction of

J2w (Kr,w) does not vary significanLly over values of the

p 2
integrand in Eq. (1) for which J2 2 is large.

III. DYNAMICS OF A LANGMUIR WAVE PACKET

We describe the nonlinear wave packet by a Schr6dinger

.2
equation with cubic nonlinearity

3Te V12 + e 2  )

e2m p Bmew T

where V' - D/Dr'; T Y T + yiTi; T (Ti is the electron (ion)

ee e e

temperature, with ye ( being the associated adiabaticity

index; me, e are the mass and charge of the electron, respec-

tively; R is the envelope of the electric field E:

-iw t
E(r',t) E(r',t) e P + c.c.

Under the following substitutions,

E (32en E

e -

t It , (4)

r' /3- X Dr'

where ne is the background number density and AD (Te/47nee2

is the Debye length, the dimensionless form of Schr6dinger's

equation is obtained:

-" , .
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2 2
+ V' + lJ J)E = 0 (5)(it +

We note that the use of the Schr6dinger equation is valid only

in the subsonic stage where the ions are adiabatic. 4 ,5 In the

Appendix this is justified for the time scale over which we

calculate the emissivity.

The electrostatic field envelope, E, can be written as

ik "r
E(r,t) = -V[ii(r,t)e 0/k ] (6)~~ 0 0

Here, ko = w b/Vb is the wave vector of the most unstable

beam mode. At t = 0, i(r,t=0) is a real function which is

localized around r = 0 and has spatial widths parallel and per-

pendicular to k . These initial widths are set by the k-space
-'0 2

contours of the beam instability. Roughly, IV 11I AkII II
and IV i z Ak P where Ak and Ak, are the parallel and

perpendicular widths associated 2 with the beam instability.

Initially, Ak << k° "

Our central approximation will be to take y to be spheri-

cally symmetric at the initial and later times, so there will only

be a symmetric width measure which changes with time. Throughout

the calculation the inequality 1V J << k0 J will be satisfied,

so the wave packet will remain relatively narrow in k-space.

This enables us to write Eq. (6) approximately as
ik "r'

E(r',t) k0 r'( )
0

This field still has the phase factor, exp(ik *r'), and is
o

thus not spherically symmetric. However, the momentum k can
-O

- '
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7
be transformed away by the followinq gauge-frame transformation

r(r,t)exp(-ik0 2t/2)

r' - k 0t (7)

Using Eqs. (5)-(7) we find that the spherically symmetric

scalar, P(r,t) satisfies,

(i + V2 + 1I 2 )p = 0 (8)

We have studied this equation in Ref. 7. It was shown there

that the condition for the electrostatic approximation is

JV I << Iko~ 0

which is well satisfied for most time-3 of interest. This differs

substantially from the so-called head-on approximation often

made8 to calculate harmonic emission. In addition, conditions

were found for the adiabatic approximation. These can be

expressed as

I 2  ko2 << m/M

In the Appendix we shall consider the validity of these

inequalities for the parameters of the present calculation.

In terms of 0, the current density j 2W can be written as
p

(see Eq. (33) of Ref. 21:
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3-r8-w X T I r
(K O t) = 'e K 1- rk ok jexp(-iko'Kor)~2w o0 = Te 0 \2- ooo

d3 rP2 (r) exp[-i(K r-2k ) "r]

The angular part of the integral can be easily evaluated,

leading to

2 vf2 6T(, D 2 2 2
i7D2  ] r sin(Sr)dr 

(j-2 K0rtl e(19-8 f3r) (9)

0

where

S K 2k = / - (19-8,fp)
0 -

The quantity S is the momentum mismatch between the harmonic

photon and two plasmons. Also, Vth is the electron thermal

speed. Use has been made of the fact that for emission at twice

the local plasma frequency, Eq. (3) gives K° = /3(W p/c);

moreover Iko1 = 2(w p/c). [Note that in Eq. (10) the dimension-

less forms of K 0and k appear in accord with Eq. (4).]

Substituting Eq. (9) for the modulus-square of the 2, -p
current into Eq. (2), we have the following expression for the

emissivity of a single wave packet:

_2 = 2 K 0 2 1dQ 0 or (19-_8 l) e 2  Vth T

f dt fdr rp 2 sin(Sr)! . (I)
-T/2 0
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IV. NUMERICS AND SCALING

Equation (8) is solved in the Hilbert space of ¢ by an

implicit finite difference method in spherical geometry. The

following invariants can easily be derived from this equation6 '9

II f 'I 2r2dr
0

2 
-02r2d

I2 =f (IarI 2  _ 1 14)dr ' (12)

where Ii is proportional to the boson number and 12 is propor-

tional to the Hamiltonian. The accuracy and stability of the

numerical scheme is checked by the (semi-) invariance of the

discrete frms of the functionals 1 and 12 on the Hilbert

space.

The computations are started by choosing a Gaussian for

the initial potential:

q(r,t=O) = 0 exp(-2r
2/ 2 ) (13)

For the particular mesh size chosen, we take i 5.66. From

Eq. (9b) of Ref. 2, and the parallel half-width of the packet

is found to be

Ak 1V
k°  4 vb

0 b
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[Eq. (9b), Ref. 21, where vb is the beam speed and Avb the

spread in this speed. From the values quoted in Ref. 2 we

find

Akil Ak l 1 Avb k 0 3 -3
- = - - . X10

kD 1/XD 4 v kD 4

Note that the Schr6dinger equation (5) is invariant under a

stretching of r' by a factor A, provided the time, t, is

2stretched by A 2 , and E is reduced by A. With A = 300, our

choice of k = 5.66 can be made to correspond to the above value

of Ak We therefore arrive at the following approximate

scaling from type III values (subscript "III") to computational

values (subscript "c"):

()III = (300)-i (()c

2
( iiI  = (300) (t) c (14)

(r) III= 300(r)c

We choose () to be 1.18, corresponding to an average energy
o c

density, (W) , at twice the threshold value. 2,7 Using the

scaling of Eq. (14) this leads to d value for (W) 11 10- 4

which is in agreement with the value used in Ref. 2. Further,

from Eqs. (4), (10), and (14) we find that

(S)c = 300(SI3II = 300$3 r tth (l9_8/) (15)

c.
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-3With (vth/c) 4.5x10 -  in Eq. (15), S is sufficiently large

for all p that the spatial integral in Eq. (11) is seen to

be practically zero for an initial ( of the form of

Eq. (13). Thus, the scaling implied by Ak [Eq. (9b) of

Ref. 21 leads to a negligible emissivity initially. The inter-

esting feature that emerges from our computations is that the

modulus and phase of change sufficiently in the subsonic

regime to enable substantial emission to occur.

V. RESULTS AND DISCUSSION

Figures l(a) and l(b) show the time development of the

emissivity of a single packet, i.e., the expression given in

Eq. (11) before performing a time-average. The emission grows

in an approximately exponential manner for most of the time

development of the packet, reaching a maximum and decreasing

thereafter until the collapse point. In this calculation haso

been taken as 450 [see the remark following Eq. (2)] and

i= k -r has been taken as /3/2 (k making an angle of 300 with
0

We note the emissivity climbs from an initially negligible

value to a peak many orders of magnitude larger, and then

begins to decay. The peak occurs at 0.994 t , where t is thec c

adiabatic collapse time. To understand this behavior, we note

that dP/dQ in Eq. (11) is proportional to the absolute square

of the following integral over c2:

00

I f dr r sin Sr (16)

L0
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Let us now write = A e , whore A(r) is a real modulus,

andc(r) a real phase, and both are spherically symmetric. The

integrand will be largest around the peak of rA2 , provided the

phase factors ei(2Q±Sr) do nct produce severe phase mixing.

For our initial of Gaussian form, a is zero and the
quanityrA2  r e-2 r 2/£2

quantity peaks at rA = 2, and has a width of

ArA 2. However, sin Sr oscillates with a half wavelength

7/S 0.5. Hence, there is strong phase-mixing of the emissivity.

This corresponds physically to the failure to conserve momentum

in the coalescence of two plasmons to produce a photon.

At later times, the packet has collapsed considerably, so

that rA2 can peak at smaller r-values with a smaller half-width,

which is therefore less susceptible to phase mixing. In

Figure 2(a), we have plotted A2 as a function of r at t = 0

and at t = 1.312. The half-width o1 A2 has decreased by a

factor of 6. In addition, the quantity rA2 now peaks at rA

0.25 with a half-width ArA , 0.25. This peak and half-width

coincide with the peak and half-width of the first maximum of

sin rS, which would seem to indicate reduced phase mixing.

However, effects associated with the phase ci of the field are

also beginning to come into play at this time. A region of

stationary phase in the integrand of Eq. (16) corresponds to a

range of points where IS±(0c/ar) becomes significantly smaller

than S. Such a region of stationary phase is beginning to

occur at t = 1.312, and is seen to overlap the peak of rA2.

This also contributes to the reduction of phase mixing. The

normalized gradient of , (?,L/ r)/S is plotted as a function

- ~ 4-
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of r in Fig. 2(b) for the time t = 1.312, and is seen to reach

a maximum absolute value of about 1/2.

The phase, a, is also responsible for the eventual reduction

of emissivity at later times. In Fig. 3, we have plotted

(a/ar)/S as a function of r at the later time t = 1.324,

corresponding to a reduced emissivity [see Fig. l(b)]. The

emissivity is reduced at this time because of the positive and

negative oscillations in the gradient of a% which once more lead

to phase mixing. The reduction can also be viewed as a cancel-

lation of the integrals over ei(2c+sr) and e+i(2w -sr), which

have slightly different narrow regions of stationary phase.

A word is in order concerning the physical significance of

the phase a. The momentum density carried by the Langmuir field

is 7  (i/2i)(EiVEi - EiYEi). In our case, this reduces to,

p = 0 + 2

Hence, x is a local plasmon momentum, which arises from the

nonlinear dynamics of collapse, and adds to k = u v /v. (We

should bear in mind, however, that average plasmon momentum is

conserved 7 and equal to k in the adiabatic stage of collapse

so <Va> f f d3rfEj 2 Va/f d 3rJE 2 = 0.) The momentum conservation

in the coalescence of two plasmons to produce a photon thus

becomes 2k -K -2Va _ 0, which is e entially the stationary~0 0 -

phase condition in the integral in iEq. (16). As the square

modulus A2 narrows spatially, the Jailure of this phase matching

condition is less serious. The gradient of A is IVA/A , which

we may identify as a spread of wavenumbers, Ak. Its maximum
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-i
value of Ak (ArA) becomes broad,!r as real space collapse

progresses (as Ar tends to zero). At t = 0, we find Ak/kA 0
10%, whereas at time t = 1.316, Ak/k 0 60%. Thus, stationary

phase becomes less important as collapse proceeds. The excep- F
tion is the late staqes, in which the phase oscillates rapidly,

causing the resumption of phase mixing.

It is important to note the role of coherent phase in this

calculation. Past estimates of th. emissivity rely on the

random phase approximation and assumptions about the relative-

size of the average plasmon momentum, ko' and the photon momentum,
8

K For example, in the head-on approximation, the plasmon

momentum k is assumed to be >>K. No such assumptions are made
0 0

here, and in fact the plasma wave momentum is not >1K . The0

coherence of each collapsing packet is taken into account,

although the contributions from different packets are incoherent

with respect to each other. Statistical assumptions underly

only our treatment of the density of collapsing packets, which

yields the volume emissivity.

In order to compute the volume emissivity we need to know

the density of collapsing packets n in the beam. We just quote

the estimate made in Ref. 2:

nc = Y glcFno

[Eq. (59), Ref. 21, where yg is the beam growth rate, ic is the

collapse time, no is the density of wave packets, given by

no z.k H (k )2/8
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[Eq. (56), Ref. 21 in terms of the parallel, Ak and perpendic-

ular, Ak1 , width of a single packet, and F is a dimensionless

unknown parameter in our model that essentially measures the

fraction of energy transferred from the beam to collapsing

packets.

To work out the time-averaging implied in Eq. (11) we

follow Ref. 2 and compute the fractional time the emissivity is

within a half-width of its peak value. From Fig. 1 this fraction

is roughly .025/1.325. Thus, we write,

___002 -1 -1
dP 0.025 x 0.16 = 0.003 ergs s ster
TO time 1.325

and obtain for the time-average volume emissivity the following

result:

J = ne <dP/dQ>e
p

= -8 TcFAk (Ak 2 x 0.0038 c 11

2
1 b b ) x 1.3265 x 300 x F

88e )ne Av b

4 b b x 0.003 ,

where 1.3265x300/,p is the numerically determined 8 collapse

time,

Y9

following Eq. (62) of Ref. 2; n is the background density,

=e
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-3 -6 and Lv are the
40 cm , nb is the beam density, 10 ne Vb b

beam speed and spread in speed, with AVb/Vb 1/3,

Ak /k° = 1/4

Eq. (9a), Ref. 2, and

k 0/k0 (i/4) (AVb/Vb)

Eq. (9b), Ref. 2. The quantity F is a factor (described in

Ref. 2) which relates to the depletion of beam modes according

to two different evolution scenarios. The final answer for the

volume emissivity is therefore

12 i120 F ergs cm
3 s - ster (15)

p

This is compared with the measured value of 2x10 - 23 [see also

Eq. (1) of Ref. 21. We see that in order to reconcile the two

values, F has to be around 103. Considering the arguments

presented in Ref. 2 concerning the magnitude of F, we see that a

value of 10- 3 is not unreasonable.

VI. CONCLUSION

Our calculations for a group of collapsing Langmuir wave

packets account quite reasonably for the observed emissivity

associated with type III solar radio bursts. These results are

encouraging enough to merit further elaboration; in particular,

there is a clear need for a better estimate of the density of

"collapsons.

I! A . -. -A .. -
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APPENDIX: VALIDITY OF ADIABATIC AND ELECTROSTATIC

APPROXIMATIONS

Our calculations have been based on the cubic Schr6dinger

equation, (5). The validity of this equation requires that the

wave field be predominately electrostatic, and the low frequency

(ion) motions be adiabatic. The conditions for both approxima-

tions are set forth in the Appendix of Ref. 7.

For the waves to be electrostatic, we must satisfy

Ak/k O << 1

where Ak 4 IVI101/0i is a measure of the gradient of 4. Our

wave packets satisfy this criterion up until the very latest

times of t = 1.324, where Ak/k ° 1 60%.

The adiabatic ion approximation requires that

k 2 jE12 < m/M = 5.4x10 - 4

0, ~

The condition on k means that the mean wave packet group

velocity is slow enough for the ions to follow the ambipolar

field adiabatically. Since k = i02 in our calculations, it

is always satisfied. The second condition essentially requires

that the collapse speed remain subsonic. Taking into account

the scaling of 0 in Eq. (14), we may rewrite this condition as

lc2 << 50

This condition breaks down at r = 0 near the time of peak

emissivity at t 1.312. However, only the peak of rjoc1 2 is

iI
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significant for the emissivity in Eq. (16). At this peak, we

find from Fig. 2 that I~c12 is of order 50, so the adiabatic

approximation is marginal. At later times, it would appear to

be violated. However, we have found the emissivity to go down

at these times [see Fig. 1(b)], so our calculation probably

does not overestimate the emissivity.
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FIGURE CAPTIONS

FIG. 1. Temporal development of emissivity from a collapsing

wave packet. Note the logarithmic scale in (a) for the early

stage, and the linear scale in (b), close to the collapse time.

-l
The scale on the time axis is in w and the computational

P

scaling [see Eqs. (14) in text]. Collapse time is 1.3265.

FIG. 2. (a) Square modulus of Langmuir field, 2 as a function

of r at t = 0 and at t = 1.32. Note the Gaussian at t = 0 appears

flat because of limited range of r plotted. (b) Gradient of

intrinsic phase of Langmuir envelope in units of momentum mismatch

S, as a function of r, for t = 1.312.

FIG. 3. Gradient of intrinsic phase of Langmuir envelope in units

of momentum mismatch S, as a function of r for t = 1.324.

NOW
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Within the last few years, there have been great theoretical

strides in the understanding of "self-focusing" mechanisms for
1-5

the nonlinear saturation of certain Langmuir wave instabilities.

In particular, it has been shown4 for a class of weak "bump-on-

tail" instabilities that direct spatial collapse can occur, due

to the self-ponderomotive force of intense Langmuir wave packets.

This may have important implications for Type III solar radio

bursts, 4 ' for the radar-modified ionosphere,6 and for laboratory

and space beam-plasma systems. Undriven Langmuir collapse cannot

occur in fewer than two dimensions, so numerical simulation study

is difficult. The relevance of one-dimensional simulations has

not been established.

In physical problems a weak background magnetic field is

often present, pointing parallel to the propagation direction of

the driven Langmuir wave packet. Linear stability analyses have

recently been performed 7'8 for monochromatic Langmuir waves in

the presence of a weak magnetic field.

There has been little or no work on the effects of a magnetic

field on collapse outside the Soviet Union. One theory 6 claims

to have found stable pancake-shaped Langmuir solitons pumped by

radio waves in the ionosphere, in the presence of the geomagnetic

field. Other studies 6 '9'1 0 have shown Langmuir collapse in

magnetic fields, but only for special symmetries and in parameter

regimes apparently unrelated to experiment. Our work differs from

these in terms of parameter regime,geometry, phenomena observed,

and physical explanation.

[ ,
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First, we shall demonstrate numerically that weak magnetic

fields cansignificantly prolong the time for collapse of a broad-

band Langmuir wave packet, and alter its geometry into a more

dipolar form, but cannot render it one-dimensional. Second, we

prove analytically a magnetic virial theorem which gives sufficient

conditions for collapse, and helps explain its retardation. Third,

we demonstrate that measured mean solar magnetic fields do not

affect the Langmuir collapse associated with Type III bursts at

0.5 A.U. Fluctuations in the magnetic field would have to be an

order of magnitude larger than the mean to have significant conse-

quences for collapse.

The Langmuir field envelope, E, obeys a generalized nonlinear

Schroedinger equation:

C2  2
i3 E + - V V.E - VXVXE - PE - nE 0t 2 2-- 2 -

Here, the units of time are w - length is measured in units ofr

/3 times the Debye length, E12 has the units of 64JRnO, where 0 is

the common electron and ion temperature, and C2  c 2/3v 2 >> 1,

2 2e/Wp 2 << 1. The magnetic dispersive term, (-s2 /2)(p.E),
ce p

arises from an expansion in the magnetic field. The operator

P 6ij - bibj projects out vector components perpendicular to

the magnetic field direction, b. In the linear limit, Eq. (1)

gives the quasilongitudinal dispersion -elation for an oblique

Langmuir-wave envelope:

2  2
2 2 e (2a)

2 2
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Here, 6 is the angle between k and b. The condition for neglect

of the transverse part of the field is

S2 sin 2  << C2 k2  (2b)

which we shall assume is well-satistfied. Physical driving terms,

such as growth due to a beam, have been omitted from Eq. (1) on

the grounds that the driving time scale is slower than the

nonlinear time scales.
4

The density deviation, 'n, is in units of 2n , where no is

the average background density. It obeys a hydrodynamic equation

driven by ponderomotive force:

(C 2 2 + 2 2, 2t + t )6n = iE (3)

Here C is the ion acoustic speed, in units of vr3/m e , and iss e

an operator representing the effect of Landau damping of ion

acoustic waves in an equal temperature plasma. We have also

briefly studied 7 magnetic field contributions to equation (3),

but find no effect on the nonlinear evolution of a broadband

packet (only a small volume in k-space is affected).

Our numerical work assumes E = -V, , and generates solutions

to Eq. (3), toqether with the divergence of Eq. (1), namely,

2  4 2V-P.V - V-(6nVf) = 0 (4)

In k-space we take an initial packet of randomly phased

modes with a shape characteristic of a prior, slow bump-on-tail

5instability. In real space this aippears as an initial pattern
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of wave packets oriented along the beam direction (see Fig. la).
The initial energy density of the packet is W = 16<IE12> = 5.6x10 - 4

and it is centered about a k-space wavenumber of k = 0.011 kD.

The parallel and perpendicular widths are Ak 0.25 ko f

Ak 0.17 k These are parameters thought to be associated0

with type III solar radio bursts. In the absence of a magnetic

field, W exceeds the threshold 4'5 for adiabatic collapse,
2 2

-24[(Ak )2 + (Ak ) ], and the packets collapse, as shown in

Fig. lb.

Next, with the same initial conditions, we introduce a

small magnetic field in the k -direction, such that K = 0.1.

This is sufficient to make the magnetic dispersion in Eq. (2)

exceed the thermal dispersion. The collapse is slowed down by a

factor 5, as shown in Figs. lc and ld. The packets now tend

toward a pancake shape, but are not one-dimensional.

Neither the slowdown nor the pancake shape is found when

= 0.01, which is an experimentally found upper bound on

the mean solar magnetic field at 0.5 A.1.J

We shall argue that the effect of the small magnetic field

when Q = 0.1 is to retard direct adiabatic collapse, allowing

induced scattering of Langmuir waves off (dynamic) ions 7'1 2 to

occur. For our parameters, the scattered waves are in the forward
13

direction, with wavenumber on the order of k /3. The evidence

for this is shown in the k-space picture in

Fig. lf for the Q = 0.1 case, compared to Fig. le in the non-

magnetic case, S = 0. The geometry and time-scale for the

K EA



6

configuration shown in Fig. if are similar to what we obtain for

a monochromatic initial packet, with B set equal to zero (not

shown here). For amonochromatic initial packet, direct collapse

cannot occur, because there is no ponderomotive force, and the

linear induced scatter instability dominates at early times.

This enables a fairly positive indentification of Fig. If as

resulting from induced scatter off ions. Such scatter is

principally in the B-direction. A more one-dimensional

configuration in k-space results, followed by collapse.

In Fig. 2 we plot, as a function of , the time for the peak

energy density in a collapsing packet to increase by a factor of

ten. Significant slowing requires 2 > 0.1.

We now offer a theoretical explanation for why the direct

collapse is slowed down by almost an order of magnitude when

= 0.1. The results shown in Fig. 1 all occur in the regim of

adiabatic ions, where Eq. (3) reducos to,

6n = -IEI 2  (5)

We now derive a virial theorem for Eqs. (4) and (5) (with

E = -Ffl). Such theorems are based on continuity and conservation

laws for Eq. (4). To generate these laws we first require the

Lagrangian density,

L 2 -2- _ ~

(6)
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This Lagrangian density depends on $, V4, V 2, and their complex

conjugates. The dependence on V2  requires a generalization of

Lagrange's equation. 1 5  Hence, the equation of motion [Eq. (4)]

is obtained from JtL;* + V-Lv* - 2 2/3xi2)2[L/D( 2 */)Xi2 0,

where a subscript of L indicates differentiation with respect to

that variable.

From the Lagrangian density we derive 1 5 ,1 6 a momentum equation

tp + VT = 0 , (7)

where the momentum density is p = (EL E EL - EL VL)/ 2 i, with

L V . The stress tensor for a Lagrangian with higher order

derivatives i1516

(S. .L * r* 1__ __

T .-- ) L 34iLj~ 2
] 2 i ij- axi 2 -- x

+ complex conjugate.

A subscript i on or 0* indicates a derivative with

respect to xi, and there is no sum over i.

The total momentum, P - f dr 1) is conserved for fields which

fall to zero fast enough at i - inity in the (unbounded) plasma.

Another conserved quantity is

H 1 2 fdr [ - EL i  + IB , (8a)

f+H

I _
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where

H d-2 (8b)

In Eq. (8a) both the magnetic and thermal dispersion terms work

4
in opposition to the nonlinear refraction, ELi

The final equation needed to generate a virial theorem is

obtained from Eq. (1) rather than Eq. (4). For an initially

longitudinal wave packet, the transverse part of the field, ET'

will remain small as long as inequality (2b) is satisfied, and as

long as Ak << k. Then IETI = C(JE I/C2 ) << WE. we take

the scalar product of Eq. (1) with EL and subtract the complex

conjugate to obtain the approximate result,

SJtEL 12 + ' = 0 . (9)

From Eqs. (7) and (9) we derive a virial theorem 4 for the mean

packet width, <,r2> =fdr 6r2 11:LJ 2 /N, where N f EL.2 is

the conserved quantity which follows from (9). The virial

theorem involves the trace of the stress tensor. 4 The result is:

t2<6r HB + 2 1 a
r = 2A - 2 B + (2-D)<IELI2> (1a)

A "2H - .P)2 -(1b

N "(0b)

Here D is the dimensionality of coordinate 3pace. Hence, we

derive a sufficient condition for adiabatic collapse: A < 0 for

D > 2.

I____-~ 7.
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For a stationary two-dimensional Gaussian wave packet,

rE Ak1 2 x2 AL2Y21
E exp ik x- -2 A~-L =i~- Vexp1 io 2 2'

L 0

and

S-k2 Ak 2  2Ak 2
] = Ak 1 ) + + 2 2

Sk 2  kD2 3k

-4
For the case Q = 0.1, Eq. (11) yields A 3x10 - . At t = 0,

H BIN is the same order of magnitude as A, so the initial value

of the right side of (10a) is A-H IN = -2x10 Numerical

integrations during our Q = 0.1 run for times prior to the pile-

up of mode energy at k /3 (Fig. If) show that HB decreases by

about a factor of 2. This is ample to inhibit collapse by

changing the sign of A-HB IN. In the next stage, momentum is lost

to ions, and Eq. (5) is violated, so our virial theorem does not

apply, and A is not invariant. By the time exhibited in Fig. if,

there is very little magnetic dispersion, and the thermal

dispersion is also reduced. The new value of A-iB IN is negative,

and adiabatic collapse begins.

Our results for Langmuir collapse in a weak magnetic field

could be significant for ionospheric modification (where = 0.25)

and for the effect of intense solar magnetic field fluctuations

on type III emission. When collapse times are prolonged sufficiently,

they may exceed characteristic times for driving. This, in turn,

could lead to higher levels of strong plasma turbulence and more
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dramatic physical effects, such as electromagnetic emission. The

altered packet shapes would also be expected to affect the pattern

of electromagnetic emission and its polarization characteristics.
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Figure Captions

Fig. 1. In Figs. a, b, c, and d we plot contours of equal

Langmuir field modulus in real space. The spacing in the

64x64 grid is four times finer in x than in y. Contours 1,

-4 -3 32, and 3 correspond to W = 7.3xi0 - , 2.9x and 6.5x10

Figure la is at t = 0. Figure lb is at t = 0.76x105 with

B = 0. Figures ic and id represent the evolution from la

(at times t = 3.6xi0 5 and 4.1x10 5 ) for the case w ce/pe = 0.1.

Figures le and If show field contours in k-space, for the

nonmagnetic case (le) and the magnetic case (if) at times

corresponding to Figs. lb and Id, respectively.

Fig. 2. Time for central energy density in collapsing wave-

packet to reach ten temes initial value.
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Weatherall, James Christopher (Ph.D., Astro-Geophysics)

Nonlinear Langmuir Waves in a Weak Magnetic Field

Thesis directed by Professor Martin V. Goldman

Large amplitude Langmuir waves are known to

experience a variety of nonlinear effects: they can
.1

couple to other modes in the plasma to excite parametric

instabilities; they can also self-focus to form localized

regions of intense electrostatic fields. This thesis

studies the effect of a weak magnetic field on both of

these processes.

First, a set of coupled equations between the

envelope electric field and the plasma density are

derived with careful treatment of the magnetic field.

When the electron cyclotron frequency is less than the

plasma frequency, the dominant nonlinearities do not

involve the magnetic field. However, the magnetic field

does increase the dispersion of the Langmuir waves and

prevents density perturbations directly transverse to

the field.

Numerical calculations show that when the magnetic

dispersion exceeds the thermal dispersion of Langmuir

waves generated by parametric instability, the wave

vectors of these waves shift to smaller perpendicular

wavenumbers. This shift preserves the frequency match-

ing in the wave interaction, and does not change the

I

I. - r
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growth rate. Instabilities directly across the magnetic

field and perpendicular to the pump wave, such as might

occur for the oscillating two-stream instability, are

suppressed by very small fields.

When intense wavepackets of Langmuir waves can

experience direct collapse, the magnetic field causes

two interesting effects: the collapsing wavepackets

assume a pancake-shaped geometry; and the collapse takes

a longer time. These effects occur when the magnetic

dispersion competes with the nonlinear self-focusing. A

virial theorem and a broadband perturbation theory help

to explain this behavior.

We find that magnetic effects may have some

relevance in the theory of Type III solar radio bursts.

In computer simulations of Langmuir wave turbulence during

a Type III burst at one-half the distance between the sun

and the earth, we observe some changes in the wave be-

havior when a realistic background magnetic field is

added. For a magnetic field several times larger than

the average measured field, there are significant effects

on the shape of wavepackets and on the turbulent wave

energy levels. As a consequence, the properties of the

radio emission, such as the amplitude, directivity, and

polarization, may be different than given by an

unmagnetized theory.
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CHAPTER I

INTRODUCTION

Waves of all types exhibit fascinating and varied

behavior at large amplitudes. Of particular interest to

solar and plasma physicists is the Lanumuir wave, which

is a charge density wave in a plasma. Theory shows that

at large amplitudes these waves can couple to other

plasma modes or can self-focus to form very intense

regions of electrostatic fields. These so-called turbu-

lent processes are central to the production of radio

emission from plasmas and to the stability of beams of

charged particles. Usually the theories assume iso-

tropic plasmas, despite the fact that in physical situa-

tions where such phenomena are of interest, a magnetic

field is often present. The main intent of this thesis

is to demonstrate that even a small magnetic field can

have dramatic effects on the nonlinear behavior of

Langmuir waves.

In nature, intense Langmuir waves are thought to

occur during Type III solar radio bursts. Spacecraft

experiments at one-half the distance from the sun to

the earth (Gurnett and Anderson, 1976 and 1977) and at
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the earth's orbit (Lin, private communication, 1979)

have shown that in conjunction with the emission of

radio waves at the plasma frequency and at twice the

plasma frequency, regions of intense localized electro-

static fields occur. This is presumed to be Langmuir

turbulence generated by a high velocity electron stream

emitted from the sun at the onset of the burst, and the

radiation is due to the interaction of the Langmuir

waves with the plasma.

This subject isalso relevant to other problems in

which plasma turbulence plays a role. For example, in

ionospheric modification, when Langmuir waves are gener-

ated by intense radar waves, a rather strong magnetic

field is present. Also, laboratory experiments (Benford,

private communication, 1979) show that radiation emitted

when a particle beam passes through the plasma is

decreased when a small magnetic field is introduced.

This is evidence that the magnetic field does have

important effects on wave processes.

The principal application of this thesis will

concern the nonlinear behavior of Langmuir waves during

Type III bursts. In addressing this problem, we solve

a general set of wave equations in two dimensions by

computer. The wave-wave processes we study include the

induced scatter off ions (Kaplan and Tsytovich, 1968),

modulational instability (Nishikawa, 1968: Papadopoulos,
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Goldstein, and Smith, 1974; and Bardwell and Goldman,

1976), and plasma wave collapse (Zakharov, 1972; Goldman

and Nicholson, 1978). These interactions encompass both

weak and strong turbulent effects.

In order to appreciate the relationship of these

theoretical problems to real solar phenomena, we will

present a brief review of solar physics (Pasachoff, 1977)

and solar radio astronomy (Kundu, 1965).

Solar Plasma Physics

The solar atmosphere consists of three regions.

The processes we will study involving Langmuir waves

occur in the solar corona. Below the corona is the

photosphere and the chromosphere. The photosphere is

the visible surface of the sun. Most of the radiation

from the sun escapes from a layer of gas only 200 km

thick at the base of the photosphere, which is 6.96x10
5

km (1 solar radius, R ) from the sun's center. The

chromosphere is a region between the ohotosphere and the

corona extending roughly 10,000 km (1.003 R0 ) above the

surface, and is studied at Ha wavelengths with narrow

band filters. The characteristic temperature of the

chromosphere is about three times higher than the ef-

fective temperature of the photosphere, which is 5700

'K. This increase in temperature, as well as the heating
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in the corona, is attributed to the dissipation of wave

energy. The transition from the chromosphere to the

corona is abrupt. The temperature rises from about

104 to 106 K, and the density falls by about a factor

of 100. The corona is optically thin, so most of the

observed radiation is due to photospheric light scattered

by electrons and dust. The corona which is not normally

visible because it is fainter than the daytime sky, can

be seen during a total solar eclipse, by special tele-

scopes (coronagraphs) in exceptionally clear skies, or

by spacecraft above the atmosphere. The average density

of the solar corona varies with height, but the tempera-

ture remains roughly constant. The corona is continuous-

ly expanding into interplanetary space. The so-called

solar wind sweeps by the earth at 215 R , with a charac-

teristic velocity of 450 km s- 1 . All of our calculations

are in a reference frame at rest with respect to the

solar wind motion.

The physical parameters in the solar corona are

summarized in Table 1 (Allen, 1976; Newkirk, 1967; Dulk

and McLean, 1978). The electron density, ne , is deter-

mined (Billings, 1966) from white light and radio noise

scattering data, and directly by spacecraft measurement.

The density varies by about a factor of two during the

solar cycle and coronal streamers are typically overdense

by factors of 2 at 2 Ro , and 10 at 10 R and beyond.

0 0
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TABLE 1

CORONAL TEMPERATURE, DENSITY, AND MAGNETIC

FIELD AT DIFFERENT HEIGHTS

r/R0  T (106K) ne (cm- 3  B0 (G)

1.1 1.0 2x10 8  10

1.2 1.2 8x107  3

1.5 1.7 2x10 7  1

2.0 1.8 3x10 6  0.3

3.0 1.7 5x10 5  0.2

5.0 1.4 8x104  0.06

10 1.1 lx104  0.01

20 0.8 2x10 3  3x10 3

100 0.2 30 lx10 4

215 0.2 5 3x10 5
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The temperature is determined (Billings, 1966) in a

variety of ways, including atomic ionization data,

spectral line profiles, decay times of radio bursts,

radar reflection, and in situ measurements by space-

craft. The magnetic field strength is known (Dulk and

McLean, 1978) from in situ measurements between 0.5 and

5 A.U., which may be extrapolated to the surface until

about 2 R0 , where closed magnetic structures begin to

occur. Other estimates involve extrapolation from photo-

spheric data, Zeeman splitting, and measurements of the

intensity, polarization, and motion of radio sources in

the corona.

Beyond these general characteristics of the solar

atmosphere, there are often active regions which exhibit

variable activity characterized by sunspots and fila-

ments. Sunspots are the result of very intense magnetic

fields (thousands of gauss), and appear dark because they

are relatively cool (4500 K). Sunspots form in groups,

generally containing two major spots of opposite polar-

ity and many small spots. The filaments are cool gaseous

formations extending 20,000 to 500,000 km into the

corona. They are observed as bright arches or promin-

ences on the sun's limb. Prominences can be stable for

200 to 300 days when they occur away from sunspot groups,

but loop prominences following flares last for only a

few hours.
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Flares are very violent events, sometimes releasing

as much as 1031 ergs in energy over a period of only

twenty minutes. Flares occur in active regions with

very strong and rapidly evolving magnetic fields, and

seem to involve the release of energy by the reconnection

of magnetic field lines. Flares are usually observed as

a brightening in Ha, but can sometimes be seen in white

light. They also produce intense ultraviolet and X-ray

radiation which affects long range communication on earth

by increasing the ionization of the ionosphere. Energe-

tic-particles which reach the earth about a day later

cause disturbances in the magnetosphere and produce

aurorae and other solar-terrestrial phenomena. Also,

during a flare the observed brightness temperatures at

radio wavelengths can increase a thousand times over

quiet levels.

Although only a small fraction of the flare energy,

-1024 ergs, is released at meter wavelength radiation,

observation at radio wavelengths provides much information

about the temperature and density structure of the corona.

Beyond their importance in understanding eruptive solar

phenomena, radio bursts are of general interest in the

understanding of nonlinear processes occurring in plasmas.
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Solar Radio Bursts

The discovery of radio emission from the sun was

made in 1942 by Hey, and strong meter wavelength emission

from the sun was first associated with a large solar

flare by Appleton and Hey in 1946. These observations

marked the beginnings of solar radio astronomy (see

Kundu, 1965; Wild and Smerd, 1963; and Wild and Smerd,

1972, for reviews and extensive references).

The radio emission from the sun can be separated

into a number of components (Allen, 1976). First, there

is the thermal radio emission from the quiet sun. There

is also a slowly varying emission associated with sun-

spots. Finally, there are rapidly changing phenomena,

associated with sunspots and flares, which are classified

into the burst types I, II, III, IV, and V. These can be

observed as noise storms (Type I bursts), as complicated

outbursts containin. Type II, III, IV, and V bursts or

emission, or as isolated Type III and V bursts.

The Type I bursts are broadband enhancement of the

continuous solar radiation during which hundreds of short,

narrow band bursts occur every hour. Type I bursts can

last for days, and are present 10% of the time at solar

maximum. They occur in active regions near sunspots, and

are sometimes, but not always, initiated by a solar flare.

Type II bursts are more rare, occurring about every

50 hours near sunspot maximum. They appear about 5 or
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20 minutes after the start of a large flare, and last

for about 10 minutes. The distinguishing feature of

Type II bursts is a systematic drift from high to low

frequency at a rate of about 1 Mc s- 1.

Type III bursts are fairly common, with three per

hour occurring during solar maximum. Individual bursts

last for only ten seconds, but occur in groups of ten or

so (see.Figure 1). They occur near the start of either

a large or small flare. The important characteristic of

a Type III burst is a rapid drift from high to low fre-

quency, at a rate of 20 Mc s- . There is also a type U

burst, which is a variant of a Type III burst in which

the frequency drift reverses direction, and drifts back

toward higher frequencies.

Type IV and V bursts are continuous radiation

following a flare. The Type IV is rare, and usually

starts after a Type II burst, although not all Type II

bursts are followed by a Type IV burst. The Type IV is

a smooth, often featureless emission, over a very broad

band from centimeter to decameter waves, lastina from

10 minutes to a few hours. The Type V is a similar

continuum event which follows about 10% of Type III

bursts.

Various mechanisms have been proposed to describe

the many components of radio emission (see Wild and

Smerd, 1963 and 1972). Bremsstrahlung is responsible
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for the quiet sun emission and the slowly varying

component, and may be important for bursts on centimeter

wavelength scales for which the corona is optically

thick. Gyro-synchroton radiation from energetic elec-

trons spiraling in magnetic fields can account for con-

tinuum bursts. Radiation from plasma waves is the cause

of Type II and Type III bursts, and perhaps some contin-

uum storms also. The excitation of plasma waves in

Type II bursts is attributed to a magnetosonic shock

wave, and in Type III bursts, a high velocity electron

stream.

The study of radio bursts, in particular, the Type

III bursts, has stimulated the development of new plasma

theory for the description of nonlinear wave phenomena.

There are many problems posed by the conversion of

plasma waves into radio emission and the behavior of

plasma waves at high amplitudes.

The Type III Burst

The explanation of Type III bursts as due to plasma

oscillations was proposed by Wild in 1950. The typical

spectra of a Type III burst (as in Figure 1) shows the

rapid drift from high to low frequencies, and the

appearance of identical spectral structures instantan-

eously at two frequencies. The drift can be attributed

to the propagation of the source of plasma waves outward
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through the corona into regions of lower electron density,

and slower plasma oscillation. This requires a source

traveling from 1/6 to 1/2 the speed of light, such as a

particle beam ejected by a flare. This beam can generate

plasma waves by a well-known instability (se3, for

example, Mikhailovskii, 1974; or Melrose, 1977). The

appearance of the double structures is evidence of emis-

sion at the fundamental plasma frequency, and its harmonic

at twice the plasma frequency.

Modern observations are consistent with this picture.

High resolution radio heliograph pictures show the posi-

tion of different frequency emission at different charac-

teristic heights (see Figure 2). In addition, satellites

have detected the plasma oscillations directly (Gurnett

and Anderson, 1976 and 1977). These plasma oscillations

are observed as narrow band spikey electrostatic noise

near the local electron plasma frequency. The oscillations

are confined to small regions of space, with tyDical di-

mensions of 10 km (Smith and Nicholson, 1979; Lin, 1979).

Satellites also detect high energy particles and electro-

magnetic emission (Fitzenreiter, Evans, and Lin, 1976).

The particles are electrons with energies from a few to

several hundred kiloelectron volts (Lin, Evans, and

Fainberg, 1973). The number of electrons in the stream,

"b , is small compared with the background density, no,

nb/no 10- 6 (Smith and Nicholson, 1979; Lin, 1979).
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(a)

(b)

FIGURE 2. Radioheliograph contours of brightness
temperature for Type III bursts, 1980 April
27, at 0228 UT; (a) at 160 MHz, and (b) at
43 MHz. Contours indicate relative tempera-
ture. (Courtesy of R. Stewart.)
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The appearance of the electron stream is simultaneous with

the observation of radio emission, but the plasma wave

turbulence occurs nearly 20 minutes later (Lin, 1979).

Theory of Type III Bursts

The areas of theoretical interest in Type III bursts

can be identified as the propagation of the electron

stream, the plasma wave generation, and the radiation

(for recent review of these topics, see Nicholson and

Smith, 1979). There are two useful approaches to these

problems. One is a quasilinear theory, which treats the

interaction of the particles and waves, but ignores the

interaction between waves. The other is to ignore

changes in the particle distribution function, but

include wave-wave interactions in a reasonably complete

way. A complete analysis in more than one dimension

including both wave-particle and wave-wave processes is

desirable, but difficult, and is not really justified

until the steady-state characteristics of plasma turbu-

lence are better understood.

The quasilinear calculation assumes that the

exciting stream is sufficiently weak and broad in

velocity that quasilinear relaxation is the dominant

effect (Smith, 1974). Ordinary quasilinear theory pre-

dicts that the electron stream will rapidly lose its

energy to waves, and will not propagate away from the

|-
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sun (Sturrock, 1964). However, when inhomogeneity in

time and space is allowed, almost all the wave energy is

reabsorbed by the stream (Ryutov and Sagdeev, 1970;

Takakura and Shibahashi, 1976; Takakura, 1977). As a

result, the stream can propagate for several A.U.

Magelssen and Smith (1977) performed a numerical calcu-

lation for Type III parameters over the entire distance

from the sun to the earth. Their results are consistent

with electron observations at the earth. However, the

electrostatic field amplitudes they find are large enough

so that wave-wave interaction is possible.

The theory for wave-wave interaction is based on

equations derived by Zakharov (1972). Applied to the

Type III problem, this theory ignores the time dependence

of the electron beam distribution function due to quasi-

linear relaxation and velocity dispersion in the beam.

This can be justified when the nonlinear wave time scales

are short. Papadopoulos, Goldstein, and Smith (1974)

showed that Langmuir waves in Type III bursts could drive

the oscillating two-stream instability at wave energies

lower than given by quasilinear theory. This work was

extended by Hubbard and Joyce (1976), Galeev, Sagdeev,

Sigov, Shapiro, and Shevchenko (1975), Smith, Goldstein,

and Papadopoulos (1979), and Rowland and Papadopoulos

(1977). All of these works are in one dimension alonc

the stream direction. The importance of the second 3
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spatial dimension was pointed out by Bardwell and

Goldman (1976), who showed that for a monochromatic pump

wave the oscillating two-stream instability could occur

in a direction perpendicular to the stream direction.

The two-dimensional work of Bardwell and Goldman was

extended by Nicholson, Goldman, Hoyng, and Weatherall

(1978), who used the plasma wave distribution given by

the quasilinear calculations (Magelssen and Smith, 1977)

as an initial condition in a numerical simulation of the

wave equations. They found that immediate soliton col-

lapse occurred in two spatial dimensions, and the col-

lapse is independent of and proceeds faster than any

associated parametric instability. The collapse takes

almost all of the wave energy out of resonance with the

beam. Thus, in principle, wave turbulence eifects may

play-an important role in the stream propagation.

The basic processes for transforming plasma waves

into electromagnetic radiation was first described by

Ginzburg and Zheleznyakov (1958), and further studied

by Tsytovich (1970), Melrose (1974), and Smith (1970).

One process involves the scattering of plasma waves (p)

on charge clouds surrounding thermal ions (i), resulting

in the emission of a photon (t) near the plasma frequency

Wpe:

p + i - t(Wpe) . (1)
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The process for second harmonic emission is the coales-

cence of two plasma waves to generate a photon at twice

the plasma frequency:

p + p'- t(2w pe) . (2)

It has been shown that the Type III radiation can be

explained by the observed plasma wave levels by this

theory (Smith, 1977). However, the theory of Type III

emission will not be complete until the effect on radia-

tion of strong Langmuir turbulence, such as soliton col-

lapse, is understood. This is the subject of much

current work (Brejzman and Pekker, 1978; Papadopoulos

and Freund, 1978; Goldman, Reiter, and Nicholson, 1980).

Preview and Motivation of Present Work

We have seen that the central aspect of the Type III

problem is the nonlinear evolution of Langmuir waves

driven by an electron beam. In this work, we consider

the effect of a weak magnetic field on two-

dimensional wave processes. We use a very simple model

as in Nicholson, et al. (1978), in which waves driven by

the beam are represented by a finite number of growing

wave modes in k-space with a finite wavenumber and

bandwidth (see Figure 3). We will ignore particle-wave

interactions beyond this beam instability, but will allow

the beam waves to interact with other Langmuir waves.

... . . .-.. . Sti! - T | | . .
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FIGURE 3. Model of beam emission of Langmuir waves in k-
space. Shaded region represents growing
wave modes.



19

The basic nonlinear wave interactions included are due to

the ponderamotive force, which tends to expel charged

particles from regions of large electric fields, and an

index of refraction effect from variations in plasma

density which tends to focus the waves.

The linear growth of the modes interacting with the

beam is described by the warm beam growth rate (Melrose,

1977)

nb 7 -Ys 2 /2

0 2AVb2

-k" Vby§ = W2 b (3)

/-2kAvb --- 6

where wR is near the plasma frequency; nb/n 0  10-6 is

the ratio of the beam to background electron density; k

is the wavenumber of the wave; vb ~ c is the mean

velocity of the beam; and vb - I is the spread in

beam velocity. The maximum growth rate occurs along the

beam direction and, for these parameters, has the value

Y/WR ~ 10
- 6. The fastest growing wave has the wavenumber

k0 given by

WR X-5 Th IV (4)

koXDe = VbVb XDe = 3.5xi0

where T is measured in K. The Debye length, ADe' is

given by

X De 6.9 T n- cm. (5)

j
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The Debye length and the resonant wave vectors, derived

from the temperatures and densities in Table 1, are

given for various heights in the corona in Table 2.

Although k is the fastest growing wave, there will be

a finite band of growing waves near k which will have
0

significant growth rates. The spread in wavenumber par-

allel to ko is due to the dispersion in velocity of the

beam. However, even for a one-dimensional beam, there

is a spread in wavenumber perpendicular to k also,0

because of the angular dependence in Equation (3).

These widths, roughly estimated from Equation (3), are

Ak 1/10 ko; Ak 1/4 kO. These estimates motivate
0I 0

the choice of Y/wpe' ko' and Ak in future numerical

simulations.

Most theories of wave-wave effects on Type III

bursts have disregarded the magnetic field. The magnetic

field is generally ignored in the context of Langmuir

waves when the electron cyclotron frequency is small

compared with the plasma frequency. The electron

cyclotron frequency is given by

Wce = 1.76xi0 7 Brad s-1 , (6)

(B is in gauss) and the plasma frequency is found from

Wpe = 5.64x104 ne rad s-1 (7)

(ne, the number density of electrons, measured in cm-3).

K
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TABLE 2

IMPORTANT PARAMETERS IN THE TYPE III PROBLEM

FOR DIFFERENT HEIGHTS IN THE CORONA

r/R x(cm) w (s 1 ) w (s-1) kX "ce
o De ce pe o De wp

1.2 .84 SX10 7  SX10 8  .04 .1

2.0 5 5x10 6  lxlO8 .05 .05

10 70 2x105  6x106  .04 .03

20 430 5x10 4  3x10 6  .03 .02

100 550 2x10 3  3x10 5  .015 .01

215 1400 5x10 2 1x10 5 .015 .005
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Using the data from Table 1 for the solar corona, we can

calculate the values of wce and wpe for various heights

in the corona. The results, given in Table 2, show that

for the average values of density and magnetic fields in

the solar corona, the cyclotron frequency is much less

than the plasma frequency.

Are these values for wce' derived from the average

condition of the magnetic field, appropriate for the

environment of the Type III burst? To answer this ques-

tion, one must consider the possible magnetic fields

created by the electron beam. It turns out that when the

background electron plasma density exceeds that of the

beam (nb << no), a reverse current appears which tends

to cancel the magnetic field indudced by the beam

(Lawson, 1977; Levine, Vitkovitsky, Hammer, and Andrews,

1971; Hammer and Rostoker, 1970; and Cox and Bennett,

1970). Furthermore, the return current is contained

within the same volume as the beam when the time for a

signal to cross the beam of dimension b at the speed of

light takes longer than the response time of the plasma.
-1

When collisions are ignored, this response time is -w

Therefore, the magnetic field is neutralized when
nb/no << 1 and w peb/c >> 1. These conditions are well

realized for Type III bursts. This conclusion is sup-

ported by measurements of the polarization of the radio

emission from the burst (Kai, 1970). If the magnetic

5. , .,.
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field were not weak, the extraordinary component of the

radiation would be filtered out no matter what the emis-

sion mechanism, and the burst would be strongly polarized.

Strong polarization is not observed in the Type III

emission. On the average, the fundamental radiation is

35% circularly polarized and the harmonic radiation is

11% polarized (Dulk and Suzuki, 1980). The magnetic field

strength derived from these polarization data give values

of the magnetic field which are consistent with the

average coronal magnetic field structure described in

Table 1.

Although the cyclotron frequency is much less than

the plasma frequency, magnetic field effects should still

be considered. For many wave interactions, it is the

dispersion of the Langmuir waves which is important, and

in the solar corona, the magnetic dispersion can be larqe

enough to compete with the thermal dispersion. There-

fore, even though the magnetic field appears in the basic

nonlinear equations as a perturbation, as we show in

Chapter 2, the effects on wave interactions must not be

ignored. This thesis examines this topic in detail.

In the third chapter we show how the magnetic field

can affect the dispersive behavior of linear wavepackets

and the nonlinear stability of large amplitude wave-

packets. The two examples illustrate many important

points which are explored in the later chapters. They
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show that the linear and nonlinear wave behavior is very

different; that it is important to include at least two

spatial dimensions in the treatment of nonlinear effects

because one-dimensional solutions (solitons) are unstable

in more dimensions;and that even small magnetic fields

can produce significant effects on waves and wave inter-

actions.

These ideas are applied in the fourth chapter to

Type III bursts and parametric instabilities. This chap-

ter contains a review of current wave theories as they

apply to the Type III problem, and examines critically

the relevancy of one-dimensional treatments. In parti-

cular, the effects of wave amplitude, the magnetic field,

and finite bandwidth on parametric instabilities is

considered.

The most interesting effects of the magnetic field

are seen in Chapter V, in which we study the evolution

of the initial wave geometry given in Figure 3. Depending

upon the values of the central wavenumber, k , the band-

widths, Ak, and the wave energy W, the real space wave-

packets produced by the beam can evolve in a number of

ways. If k0 is such that the wavepacket is traveling

slowly relative to the ion wave speed, the ponderomotive

effects can resonate strongly to expel plasma, and

refract waves into the regions of reduced plasma density.

For small W, however, this effect cannot overcome the
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dispersive nature of the wavepacket. For stronger W,

the self-focusing can overcome dispersion, and the wave-

packet contracts or collapses (Goldman and Nicholson,

1978). For even larger W, intense modulational insta-

bility breaks up the wavepacket, and many collapsons

form.

For wavepackets in Type III bursts, the Langmuir

group speed is such that for distances from the sun

greater than 10 R0 , direct collapse can occur. For

distances closer than -10 R0 , the ponderomotive effect

cannot resonate strongly with the wavepackets. In this

case, parametric instability (induced scattering off

ions) occurs, producing a new initial condition, and

subsequent collapse (Nicholson and Goldman, 1978).

With a magnetic field, the collapse still occurs.

As a result of the magnetic field, collapsing wavepackets

become pancake-shaped, with the largest dimension trans-

verse to the field, and the collapse is delayed. This

can have several consequences in the Type III problem.

The different wave configuration can affect the emission

and polarization of radio emission, and the lengthened

collapse time can allow the beam to interact longer with

the waves in the plasma. A computer simulation shows

that this results in higher levels of electrostatic

energy. An analytic theory is presented which is

.i
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successful in describing the new wave configuration and

the slowing of the nonlinear processes.

V_



CHAPTER II

WAVES AND WAVE INTERACTIONS

There are three simple linear waves in an unmagne-

tized two-component plasma; an electromagnetic wave, a

plasma wave, and an ion-sound wave (Krall and Trivelpiece,

1973; Jackson, 1975; Chen 1974). These waves have the

following dispersion relations:

W2  2 c 2 2

pe

W2  W 2 +3v 2 k 2

pe e

2 =k 2 c 2 ; (8)
s

w is the wave frequency, k is the wavenumber, and c is

the speed of light. The plasma frequency, w pe =

(47re 2n 0 /M e) , is the frequency of free oscillation ofee
electrons in a plasma (e is the electron charge, me the

electron mass, and n0 the number density of electrons).

The sound speed is cs =(T e+Ti )/m i ] , where m . is the

ion mass, and Te and Ti the electron and ion temperatures.

The electron thermal speed is ve = (Te/m).
e eI
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Two kinds of plasma motions occur in these waves.

When the wave is high frequency (w >> kv e), the electrons,

because of their lesser mass, are easily displaced rela-

tive to the ions. This separation of charge causes an

electric field which tends to restore the electrons to

their equilibrium position. This oscillation occurs near

the plasma frequency. At lower frequencies (w << kve),

however, a quasi-neutral fluid displacement takes place.

Since the two kinds of motion are associated with compli-

mentary frequency ranges, two distinct time scales

naturally occur. On the high frequency time scale, there

are the plasma and electromagnetic waves. The ion-

acoustic wave is low frequency.

In a magnetic field, Bo, cyclotron motion is also

possible. However, because the cyclotron frequencies,

Wce = eB 0 /mec for electrons and w ci = eBo/mic for ions,

can be assumed to be much less than the plasma frequency

in the solar corona, these motions are also distinct

from the high frequency motion.

Before deriving the nonlinear equations, we will

examine the linear properties of two waves, the oblique

Langmuir wave and the ion-acoustic wave, which will turn

out to be the relevant waves in this problem. The Lang-

muir wave is of special interest because it can be driven

to large amplitude by a plasma beam, such as a stream of

electrons from a solar burst, while the electromaonetic
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mode has a phase velocity greater than the speed of light,

so cannot resonate with a beam. And we will see later

that the ion sound wave interacts nonlinearly more

strongly with the high frequency wave field than do any

of the magnetic low frequency modes.

Langmuir Waves in a Magnetic Field

The Langmuir wave is an electrostatic plasma wave

with an electric field 6 parallel to the direction of

propagation, k. We want to know how a magnetic field

will affect its frequency and polarization.

The general wave equation for e in the case of no

external field is found (Jackson, 1975) from Maxwell's

equations and linearized fluid momentum and continuity

equations:
a2e

- 2 3v_ 2 V(V.e) + c 2 Vx~xS = 0 (9)pe- e

We can include the effect of a small magnetic field as a

perturbation in the momentum equation when the frequency

of the wave (-w pe) is greater than the magnetic gyration

frequency; i.e., wpe > wce The result is the follow-

ing wave equation (Goldman, Weatherall, and Nicholson,

1980):

2e

p e v7V5 + c2 x - - -c

- (fx -) , xce = 0 , (10)
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where the vector e is in the direction of the magnetic-ce
field, c = b.

-9ce = ce

This equation may be solved with the usual matrix

methods to find normal modes. The change in the Lang-

muir wave natural frequency which is of order 2 isce

W2 _ W2 -3k2v 2 = w2 sin 2e , (1)
pe e ce

2 2< 2
when kpe , and 8 is the angle between k and B o

If we write the electric field as the real part of

eE exp(iw0 t), the polarization vector e is

sine iW W 0 W -sine

e 0 + ce pe sine + ce) 2c2 1 2 c2

cose 0 \cose

(12)

in a coordinate system with Bo in the 2-direction and k

in the x-z plane (see Figure 4). The first term is a

vector in the direction of k. The other two vectors,

containing the transverse components of the field, will

be small when

2 2

W pewce << k c . (13)

If we ignore the transverse parts of the field,
however, we can make errors of order w ce/pe in the wave

equation. This is because in the c 2VxVx e term, the

electric field is multiplied by an enormous factor. We
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FIGURE 4. Coordinate system with macnetic field B-o

in z direction. 0 is the angle between

wave vector k and BO.
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see by substituting the vector electric field into this

term that

0 /cose

c 2 VxVxe = ipce + 2 sinecose . (14)pe ce (0) I
\-sinel

Actually, such terms due to the transverse part of the

field cancel or combine with other magnetic terms in the

equation:

0

iW X jiW 1+ 0 ce
pe ce pec ce

Isine2

W Xc x e =2 0 + 0 ce , 2 (15)-ce -ce - e (c 2k 2 w pe) e

After use of the polarization information (equivalent

to diagonalizing the wave matrix), the wave equation

becomes

2_= _w 2  + 3v 2 V V.6- sin2ew 2 e (16)

3t2  pe- e---ce- (6

With this equation, the longitudinal approximation will

22cause only small errors of order wce wpek c2 . The term

6sin2e represents the inverse Fourier transform of

_(k)kx 2 /k2, and is conveniently evaluated in k-space.
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Ion-Acoustic Waves in a Magnetic Field

The low frequency electrostatic ion-acoustic wave is

described by the wave equation (Krall and Trivelpiece,

1973) for the quasineutral density perturbation, Sn

a2
6n -c 2V26n = . (17)

In the solar corona, the slowly varying wave time scale,

- is such that (Nicholson, et al., 1978)

i >> >>W ci (18)ce c

This means that we should add the effect of magnetized

electrons, while leaving the ions unmagnetized, to the

fluid theory of ion-acoustic waves. Using the electron

and ion continuity equation, the unmagnetized ion momen-

tum equation, the electron momentum equation with the

magnetic force, and the assumptions of quasi-neutrality

and electrostatic fields, we obtain the dispersion rela-

tion (Nicholson, et al., 1978):

2 k 2c 2 + Wce ci

1 -_/_zce
k (19)W
kx2

z is parallel to B, as shown in Figure 4.

The dispersion relation has two branches, which are

plotted as a function of angle e in Figure 5. At e = 0

(i parallel to B ), the two branches can be identified- I!
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2FIGURE 5. Electrostatic waves with B #6 0. W vs.e

holding the magnitude of k fixed.
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with an electron cyclotron wave and the well-known ion-

acoustic wave along the magnetic field (Jackson, 1975).

As the angle increases toward e = n/2 (k perpendicular

to B o), the cyclotron branch evolves toward the lower

hybrid resonance, while the ion-acoustic branch shows a

substantial change only in a narrow region near e = 1T/2

of width ~ /-7/.. This leads us to conclude that the
e I

wave equation for ion-acoustic density perturbations is

the same as with no magnetic field, except for the wave

vectors directly perpendicular to the magnetic field.

These properties of the sound wave in a magnetic

field can be explained by a simple physical model in which

the motion of electrons is restricted to the direction of

the magnetic field like "beads on a wire." This assump-

tion does not change the fact that the electric field

must be in the direction of the pressure gradient, and

the resulting wave equation has the same form as in the

unmagnetized case. But in order for the motion of the

electrons, which is now strictly in the direction of the

magnetic field, to be uninhibited by electron inertia,

we require that w << kzVe . This gives us the condition

0

kz Me (20)
1

There are many low frequency modes which exist when

the plasma is magnetized besides this one. We will

&
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investigate these in the context of their interaction

with nonlinear Langmuir waves in a later section.

Wave-Wave Interaction

Although the above linear waves occur on different

time scales, we can deduce several ways by which the

high frequency electric field and low frequency density

might be coupled together. First, suppose that the Lana-

muir electric field envelope is slowly varying. If the

displacement x = qE/mw 2 of an electron in an oscillat-

ing electric field, = Ecoswt, is much smaller than the

length scale, L, of the inhomogeneity, then we can treat

the inhomogeneity as a perturbation. The net effect is

that over many oscillations, the electrons feel a force

away from regions of larger electric field amplitudes:

ax p ax 4 2 (21)~- mw
0

This is the ponderomotive force, and V is the pondero-p

motive potential. Although the force on ions is m e/mi

smaller, the ions will be displaced also because of

electrical forces caused by the departure of the elec-

trons. The result is a decrease of the fluid density

in regions of large electric field.

The density irregularities can also affect the high

frequency wave. From the Langmuir dispersion relation,
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we can see that the phase velocity of the Langmuir waves

depends upon the electron density:

-! - 4'pe - nh (22)

k k

This will cause the plasma waves to be refracted into

the regions of lower density. Together, these two non-

linear effects are known to result in plasma instability.

The particular contribution of this work is to include a

magnetic field in the study of the nonlinear behavior.

Before proceeding further, we will derive the nonlinear

coupled equations.

Derivation of Nonlinear Wave Equations

If there are two distinct time scales, we can

separate the fluid and field -quantities into two parts.

For example, the low frequency (slow time scale) component

of the fluid density n is found by averaaing over the

period of the high frequency motions:

- W ~2 -,T / (i
n = 2  n dt. (23)

0

The part averaged out is fluctuating at the hiqh

frequency:

n. = n - n . (24)

If the averaging is to be useful, nL must not change

L- -
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significantly during the period of the fast motions.

Let the characteristic time for change in nL be called

T. Then the requirement for separable time scales is

_ << (25)
wT

The high and low frequency variables are defined in this

way:

n =nLe + nH en = nL + nH,

e =vLe + vile --L + Vg

B=B + 6L (26)

Notice that BL includes the background magnetic field,

B , and the background density, n, is contained in nL .

Because the high frequency wave is electrostatic, there

is no BH term. The high frequency oscillation can be

factored out of the high frequency electric field by

writing it

- iW t
6H = E e pe + E e pe (27)

E is called the "envelope" of the field. The superscripts

e and i refer to the two plasma species, electrons and

ions. When no superscript appears on the fluid quanti-

ties n, v, q, or m (density, velocity, charge, or mass),

- ~ I
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it is understood that the equation may be written for

either electrons or ions.

By time averaging, an equation containing two time

scale quantities may be separated into two equations,

one which is high frequency, and one which is low fre-

quency. We will analyze the fluid continuity and momentum

equations in this way. When the forces acting in the

fluid are electric, magnetic, and pressure, the fluid

equations are

9n3 + V.nv = 0

3v + n-_ _ = _ + - __ - (28)

where y is an adiabatic index, and v is the thermal

velocity.

Each variable contains a high and low frequency

part, so many components are involved in a product such

as nv:

nv = n v + n v + n v +nv . (29)H H L L H L L H

The low frequency quantity which survives the time aver-

age over the high frequency period is nLvL. The high

frequency quantity which oscillates at w is nHvL+nLvH.

The fluid equations (for electrons or ions), after

separating the time scales and eliminating terms which

are of order I/wT or xosc /L, are
.. ,.
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1) high frequency:

an H

t .LH = 0,

a2 nLq

nL - VH nL -H 3vs 2 VnH +  (VHX-L) K
S= 0; (30)

2) low frequency:

3nL
- V.nLvL = 0 ,

"L L + nL7L '-L nLLHV - VH - nm rL

+ Vs2VnL - -q- nLLxBL = 0 (31)

The nonlinear term in the low frequency momentum

equation is the ponderomotive force:

q2IEI 2
m e e vve n 2 2

metnLVH.V H 0- 2 *2 (32)
mw

pe

We can identify several nonlinear forces in (30)

which affect the high frequency motion of the electrons:

6n(q/m)_eH , (33)

-L (n q/m) (34)
-L H /(34)

and n L(q/m)yH/cx6B~ L (35)



41

8n, and 6 are fluctuations due to the low frequency

wave. if n0 and B. are the constant density and magnetic-I0

field, then nL = no+6n and BL = Bo+6BL.

The dominant nonlinearity in the high frequency

equation will depend on the character of the low fre-

quency wave. For example, the ion-acoustic wave has

density fluctuations, but because it is electrostatic,

there is no magnetic field associated with it. In this

case, the pressure term is largest, because the magnetic

22
term is zero, and the electric term is of order IlL kDe

when compared with the pressure. On the other hand, the

Alfven wave has no density fluctuations associated with

it. Now the magnetic term is largest, the pressure term

is zero, and the electric term is again small, of order

1/wT. So the various low frequency waves will have

different nonlinear effects.

Notwithstanding the above remarks, the only nonlin-

ear term that we are going to keep is the pressure term.

The reasoning is that we are not interested in all of

the nonlinearities caused by all of the low frequency

wave modes, only the largest one. The important low fre-

quency fluctuation will be the one which has the strong-

est influence on the high frequency wave. So we ask the

following question: if the plasma has large low

frequency density fluctuations, Sn/n o, large magnetic

fluctuations, 16BLI/!B o, and large electric fluctuations,

iL
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I LI/IdHI, which will the high frequency wave couple to

strongest?

To answer this question, we first take the ratio of

the magnetic nonlinearity (35) to the density term (33):

l6B l/l ol _ee
BL ce (36)

o pe

If there is a nonlinear wave which has large density

fluctuations, Sn/n 0 1, and another nonlinear wave which0

has large magnetic fluctuations, 16BL/IBoI - 1, the

density perturbation causes the larger nonlinearity in

the high frequency equation since wce/w << 1. We can
cepe

similarly compare the electric field term (34) to the

density term (33) to form the ratio

L -H xosc
7nn L

0

This also will be small since x /L << 1. Therefore, we
osc

will limit our attention to waves which have large den-

sity fluctuations, and ignore the electric and macnetic

fluctuations.

Nonlinear High Frequency Equation

Keeping only the pressure nonlinearity, the high

frequency equations are identical with the linear ones

except that no is replaced with n = no+6n. The deriva-

tion proceeds as in the linear example, except that 2 is
pe
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now 4re2 /m e(no +n). The nonlinear high frequency

equation is

2  4 7e2n
Y2 e + o + 3v 2V V.e + sin 2 eW2

at2 me - e ce

4 7e 2 n . (38)

me

Actually, we are more interested in the slowly

varying behavior of the envelope field. This can be

easily obtained by factoring out the common multiples of

exp(-iw pet) from the high frequency equation. Notice

that the term containing time derivatives is

- E e pe = _E - 2i e E - w2 E

at2  at 2 - pe e

-iW t
e pe (39)

2 n
The term -w E cancels with 47e n /m E. Because the

pe- 0 e-

envelope is slowly varying, a2 /at2E can be ignored

compared with w pea/tE. The resulting equation for the

envelope field is then:

2i +3 27 V'E - w2 sin2 4'e2 6nE
2iWpe at e + 3Ve n = m e

e
(40)

Low Frequency Waves

The introduction of the background magnetic field

produces a rich set of low frequency normal modes (Stix,

- ,-1~
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1963). Some can be described from the linearized ver-

sions of the low frequency fluid equations. Others need

a more elaborate kinetic theory derivation. A partial

list of these modes and their frequency of oscillation

is in Table 3.

We have argued that the most important source of

nonlinearity in the high frequency equation is due to

the low frequency density perturbations. If we Fourier

analyze these density perturbations, the largest ampli-

tudes of 6n(w,k) might be expected to be when w is near

some natural frequency of the plasma, G(k). Therefore,

we solve for the density perturbations which are reson-

ant with each of the normal modes, and see if any mode

has exceptionally large amplitude.

The low frequency electron density perturbation may

be derived by first using the wave equation (including

the nonlinear currents) to find the amplitude of the

electric field. Next, the electron currents due to this

field are calculated from the linear conductivities. The

resulting density perturbation is found from the contin-

uity equation. The answer is a complicated, but general

equation for 6n (Sanuki and Schmidt, 1977):

6n(w,k) = -k. + I ()
- - ec /  e w

(41)

is the low frequency electron conductivity, M is the
=e

. ________________
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TABLE 3

SAMPLE OF MAGNETIZED WAVES AND THEIR COUPLING THROUGH

DENSITY PERTURBATIONS WITH HIGH FREQUENCY LANGMUIR WAVES

Wave Wa A0

Ion Acoustic kc 1
(Partly Magnetized) s

Ion Acoustic k c1
(Fully Magnetized) "11 S

Ion Cyclotron ci

cos@ I/klv\ 2 
/'Wel

Electron Cyclotron W coSe \e

ce / e

Electron Bernstein 2ce ce - )W-,,)UH I  ce/

Lower Hybrid (W ce W ci) W e

Whistler k (Cc A sin2

pe

ALf-en (Fast) kvA (C) 2 sin2e\vA/

2

Magnetosonic kva

(Partly Magnetized) A

Alfven (Slow) kvA(-
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inverse of the Maxwell wave matrix, and ip is the Fourier
p

transform (a convolution) of the ponderomotive potential

[see Eq. (32)].

We can evaluate this expression for various normal

modes by making a resonant approximation. The result is

very interesting, because for each normal mode w , we

can write an equation for 6n in this form:

2_ n a2  n Aa (2(w- 2_ - A - (42)

0

On the left side of the equation is a linear wave opera-

tor on 6n, and on the right side is the nonlinear driving

term due to the ponderomotive potential. Notice that the

coupling is proportional to A For the ion sound wave,

A = 1. In every other instance, A ais a smallness

parameter, such as cs 2/VA2 [where cs is the sound speed
=(Bo2/4mi °  2

and vA 2 /41m n is the Alfven speed] or k 
2 ve2 /Wce

The coefficient A , calculated for each of the normal

modes in Table 3, is given in the last column. In the

lower solar corona, when w 2W - 0.1, these numbers arece pe

of the order (using parameters from Bardwell and Goldman,

1976)1

2 2 v 2

Cs2 1 kL e 2 3

2 40 2 10 (43)
vA Wce

These parameters have interesting physical interpre-

2 2.tations. c5 /v is the ratio of the thermal to magneticrationA
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energy# noT/(Bo2 /4n). In this case, we might deduce that

more of the wave energy is in the magnetic perturbations

than in the density perturbations. The other parameter

kV e2/W 2  is the ratio of the thermal gyroradius to the

wavelength. This factor enters because the electron

motion across the magnetic field is restricted.

Without solving the complete, nonlinear equations,

what conclusions can we reach regarding the intensity of

the nonlinear interactions from the coupling coefficient

Aa in Eq. (42)? With several simplifying assumptions,

we can derive an upper limit on the growth rates of

parametric wave instability. We will use this as an

indication of the relative significance of the various

low frequency wave modes in the nonlinear theory.

First we assume a simple three-wave instability

(see Figure 6) involving a large amplitude Lanqmuir wave

at (w ,k ), an unstable Langmuir wave at (wLkLk), and a
0 -o

low frequency wave at (w ,k). We can obtain a very

simple dispersion relation (Bardwell and Goldman, 1976)

by linearizing Eq. (40) (Fourier transformed in time

and space) and Eq. (42) about the pump wave field, Eo:

(x-A+iyL) (x+iv) + X2 = 0, (44)

where the frequency mismatch terms are defined

A= W O-W , X W-W . (45)

.. ."I ~I ' . .I /
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k

k
-O

I

FIGURE 6. Three-wave wavenumber matching condition.

[ii
.. .. 2 . . . . - .. . .. . . . . .. ,- - .... - , '
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We have included the phenomenological damping of the

Langmuir and the low frequency modes, yL and v, respec-
2

tively. The term A is defined

2 a [U2 E 2\ a
-T--=- A/J (46)
pe p

In order to estimate the maximum growth rate, we

now assume 1) perfect frequency matching, A = 0; 2) w is

nearly resonant with the low frequency mode, so that

x - iIm(w) i; and 3) negligible Landau damping of

the high frequency Langmuir wave, yL = 0. Equation (46)

solved for r gives

( V 2/7 4X2 *(47)

For waves which are weakly damped, the condition that

v << X is very easy to satisfy, and the growth rate is

given by

~ -- . (48)

This may not be true for the ion-acoustic wave,

which is heavily damped at equal temperatures, v - c k.s

Let us consider the consequences of damping on the

growth of the ion-acoustic mode. To be specific, we

choose k = 0.078 kDe' which is the wavenumber matching

required near a few solar radii for a three-wave decay

instability during a Type III burst (Bardwell and
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Goldman, 1976), and a pump energy Eo2 /8nn0T = 10 - 4

For these parameters, / 2 = 144, and the growth rate

given by (47) is reduced by 1/6 when compared with (48).

Generally, the smallness parameters Aa in Table 3 are

smaller than 1/6, so that the damping of the ion-

acoustic mode can be ignored in the context of this

discussion.

Therefore, to the extent that our assumptions have

led to the most favorable conditions for growth, (48)

can be viewed as an upper limit to the growth rate.

Because r A a, we can conclude that for instabilities

involving two Langmuir waves and a low frequency wave in

a weakly magnetized field, the growth rate will be

largest if the low frequency wave is the ion-acoustic

wave. Without further justification, we will extend

this conclusion to wave interactions in general, and

exclude the magnetic modes in the computation of 6n.

Low Frequency Nonlinear Equation

The above discussion motivates the derivation of

the low frequency wave equation under assumptions which,

in the linear regime, give the weakly magnetized ion-

acoustic mode. We will assume

n , 6ne  n n

v e/v e <<1 (49)
± i

I.
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Together with these assumptions, Eq. (31) leads to the

following low frequency equation:

+ cs2V2 n -i V( 2 2 2) n 2(e2E )
e

kz > (me (50)
k (mi)

Summary of Nonlinear Equations

The basic equations describing the behavior of

intense Langmuir waves have been derived from the follow-

ing equations: the electron and ion continuity equations,

the electron and ion force equations, and Maxwell's

equations. The treatment is general enough to include a

background magnetic field. Several assumptions used

during the derivation are:

1) All quantities are high or low frequency;

2) Displacement of electrons in the high frequency

motion is much less than the scale length of the slow

variations;

3) Electric field energy density is small compared

to the thermal energy density;

4) Magnetic field is weak--w << wce pe

In addition, the following important assertions

were found to be justified:

- .
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1) The high frequency field is electrostatic;

2) Density nonlinearities are more important than

magnetic nonlinearities in the high frequency equation;

3) Density perturbations due to magnetic modes are

negligible.

The fluid derivation of the wave equations does not

include damping. Kinetic theory shows that both the

Langmuir wave and the ion-acoustic wave are damped by

the interaction of thermal particles with the wave elec-

tric fields (Landau damping). This effect is added to

the equations in the form of phenomenological damping

rates ve and v. for the Langmuir wave and the ion-e 1

acoustic wave, respectively.

Before writing the equations in their final form,

we define the following convenient units:

t] 3 1 mi -I

2 r me  pe

e

[x,y] = 3 (1. 1i)

4 me
[n] -5 n --± no

[E] ( () 3 T (51)

where the electron Debye lenqth is X ke = (T/m eW e
e De e re

and the dimensionless ratio r~=(y eT e+y.T.)/T e
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In these units, the coupled equations for E and n

are:

are: + "e+ V 2 _ 2 sin 2 )E = nE

a2  a 2V2 (52)-+ lv 2 )n = v2 !~2 t2 at

The magnetic parameter is

=ce (3 1 (3
4(m 3)

pe e

These dimensionless units (Nicholson, Goldman,

Hoyng, and Weatherall, 1978) will be used throughout

this work except on occasion when dimensional units are

used for the sake of familiar notation. These should

not be confused with other units defined in the litera-

ture, e.g., Zakharov and Rubenchik (1973) or Goldman

and Nicholson (1978).

In the adiabatic approximation (Goldman, Rypdal, and

Hafizi, 1980) the inertia of the ions is ignored, which

allows (;/Dt)n- 0. The two equations can then be com-

bined to give a nonlinear Schroedinger equation for the

scalar envelope field E:

i 2- E + .-v E + 2 Q2 sin2O + (IEI2_ E12)E
a t 2s )

0. (54)
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Numerical Simulation

We can solve Equation (52) numerically in time and

in two spatial dimensions using a split-step Fourier

method (Hardin and Tappert, 1973). The algorithm is

described in detail in a paper by Nicholson (1978, un-

published). The idea is to use complimentary grids in

real space and wavenumber space, where each grid consists

of 64 points in each dimension (or sometimes 32 points

when computer time is restricted). This allows the solu-

tion of the linear part of the equation in k-space and

the evaluation of the nonlinear terms in real space.

The introduction of the magnetic field is made by

two changes in the algorithm. One is to add the magnetic

dispersion to the thermal dispersion of the high fre-

quency waves in the linear part of the program. The

other is to suppress the low frequency density fluctua-

tions directly perpendicular to Bo when kv e/Wc < 1.
-0 e ce

For equal electron and ion temperatures, the ion-

acoustic mode is heavily damped. Nonetheless, the wave

behavior is adequately described by including a phenom-

enological damping, vi - 2csk (DuBois and Goldman, 1965;

Bardwell, 1976; Bardwell and Goldman, 1976; and

Weatherall, Nicholson, and Goldman, 1979). The damping

in the high frequency equation can be set equal to zero,

V = 0, because the wavenumbers contained in the numeri-

cal grid are small and only very weakly Landau damped.

'Ma



The simulations described in later pages of this

work involve two sets of parameters for the solar corona

which we have summarized below:

1)1.1 R

n e = 10 8cm -

T = T. = 140 eV
e I

=o 0.05 XDe

8 S-1W pe =5.64x10

~'e=0.88 cm.

W =e0.1 W for B 0=3.2 gauss

2) 0.5 A.U.

ne= 50 cm-

T e= T. =20 eV

k= 0.011 X- 1

W = 4x10 s
pe

De = 470 cm

W ce = 0.01 W pe for B= 2.3x10- gauss



CHAPTER III

LINEAR AND NONLINEAR LANGMUIR WAVEPACKETS

Before solving the nonlinear equations numerically

for the time evolution of large amplitude Langmuir waves,

we should see what can be learned from two simple examples.

The first is a dispersive wavepacket of Langmuir waves.

Dispersion is a completely linear effect, and can be

studied numerically in the context of Equation (52) for

very low amplitude fields. The second is an interesting

example of a one-dimensional soliton. The soliton is an

exact, localized, nonlinear solution to Equation (54).

However, the soliton is unstable to two-dimensional

perturbation. Below we consider these two examples, and,

in addition, study the effect the magnetic field has on

dispersion and soliton stability.

Linear Dispersion

Dispersion of waves is due to the simple fact that

waves of different wavelengths have different natural

frequencies. One effect of dispersion is that waves of

different wavelengths travel at different phase velocities.

This has an interesting consequence when the wave is

i4
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localized in space in a wavepacket. Because the wave-

packet is made up of many different wave components, and

these component waves do not travel at exactly the same

velocity, the packet will tend to spread out or to

disperse.

In order to examine this effect, we will look at

coherently phased Gaussian wavepackets. Gaussian wave-

packets have the convenient property that at later times,

at least to the extent of the approximations we will use,

they remain Gaussian shaped. Therefore we represent the

wave field (in one-dimension) as the real part of - -

E(z) = A e kz (55)

where k0 is the central wavenumber, z is the spatial

dimension, and the envelope function, A(z), is a Gaussian

with width L,

A(z) A exp[-(z-zo )/2L 1 (56)

In linear theory, any field can be represented as a

superposition of plane waves. The time evolution of any

of these component waves is found from the wave equation

and is independent of the others. For example, the

variation of the phase of a wave with wavenumber k is

S= (k)t, where w(k) is given by the dispersion relation.

The time evolution of the wavepacket can be found by

Fourier transforming the packet into k-space, shifting

L L-I-
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the phase of each Fourier component by flk,t), and trans-

forming back to real space again:
00

E(z,t) = 1 f E(K) e- (k't) eikz dk. (57)
-00

Absorption is ignored. K
In k-space, the packet is a Gaussian centered around

k 0

E (k) = Ao 0 2Tr L e-(k0)L/ e •ikk ~ (58)

In the limit that L becomes infinite (no wavepacket),

E(k) is a 6-function about k . If L is finite, but there
0

are many oscillations in a packet width, then the spread

of wavenumbers around k is small. (k,t) can be expanded0r

aboutkoi

(k,t) = (k ) + (k-ko) 0 (k
0 o dk o

+ I (k-k ) 2 d (k ) + ... (59)
0 dk2  0

Now we can see how each order in (k-k ) affects E(z,t)

(Ginzburg, 1970).

To zero order, each wave mode in k-space advances
2 2 2 nti

in phase by = 0t, where Wo =W pe + 3k 0ve Inthis

case there is no dispersion. The integral (57) is

easily done to find the real space field:

E(z,t) = Az) exp(ik z-iw t) . (60)

0 0

L i. ..I I I ...." ' ' i i i i . .-- -h , i i ' i ' l ' i -i i , ., .
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Notice that the packet envelope itself does not move,

although the waves inside the packet propagate with the

phase velocity, w /ko.

To the next order, the phase is linearly dependent

on wavenumber. Now the integral (57) becomes

E(zt) = A z - t) exp(ikoz-iw t) • (61)
0

The packet moves without distortion with the velocity

Az/At = dw0 /dk0 , called the group velocity. To this

order, both the group and phase velocities are well

defined. A(z) can be any shape, not just Gaussian.

Finally, to second order, the expression for E

becomes more complicated:

E(zt) = Ao  l+i$t exp(ikoz-iwot)

(Z-zo-at)
2  1

exp 2 22(l-t)

dw 3v 2k 2
0 e o

o 0

d 2 2 2
= 2 0  e 10 (62)

L 2 dk 2  L2  2

We have used the dispersion relation for Langmuir waves

(8) in solving for a and S. The maximum of the envelope,

SEJ, moves with the group speed as before. But now the

width of El is increasing with time. This is because
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neither the position nor velocity of the wavepacket is

precisely defined. The coordinate uncertainty in the

position of the waves is Ax = L, and the uncertainty in

velocity is due to the spread of wavenumbers, Ak = 2/L.

In quantum mechanics the probability function of a free

particle has similar behavior (Leighton, 1964).

These results can be extended to two dimensions of

a wavepacket centered around x = xo and z = z0 , with k--o

in the z-direction:

E(x,z) =A ° expj-[x-x O) 2 + ( z - z 0 ) 2 ] / 2 L2 exp(ik z)

(63)

The time behavior is a generalization of (57):

E(xzt) 2 f f E(kx,k z )
(2r) - -

exp(i(k z +k xx)]exp[-iW(k)] dkxdkz (64)

To first order in (k-k), the phase propagates with the

velocity Vph = "' /k oZ, and the packet envelope moves

with the velocity vgr = dw /dk o, as one would expect.

The expansion of t(k) to second order in (k-ko) is

31
((k) = %o ) + (k-k 0 ) Q (o) + -1 (k-ko) (k-ko)

0 1 j i

*kj (k " (65)
aki ak -o
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(In the summation convention, sums over both coordinate

indices are implied by repeated decay indices.) If the

matrix (3/3k i ) 0/3kj [ (JQo)] is not diagonal, the integra-

tion in (64) becomes very difficult. We will choose two

examples for which the matrix is diagonal: 1) an iso-

tropic plasma with a symmetric Gaussian wavepacket; and

2) an anisotropic plasma with k in the direction of Bo .

The equation for the envelope modulus squared has the

form (in either case):

2 21 1 1E (1+t 2 ) (1+22
0 I~ t 16L

2 2[ L(+Lt) ep[ Lzzo+ ]~)
(X-X) exp 2 (66)I Lx L2 (l+a2 t2 ) I IL2 (i+B 2 t2 )I

When there is a magnetic field (case 2), the dispersion

parameters for Langmuir waves, as derived from (11), are

..1 1 1 2e+322

1 1 1 (3k2v 2W o k 2 L2 e eo

v 2 k

y = 3 e o (67)
o
0

The case with no magnetic field (case 1) is found by set-

ting the electron cyclotron frequency, wce' in the above

expressions to zero.
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Now we will use the computer to solve for the time

behavior of a wavepacket of Langmuir waves. Actually, we

are solving the complete set of wave equations (52), but

for small amplitudes of the fields the nonlinear behavior

is not important. We can compare the numerical results

with the analytic theory to verify that the code is doing

the linear physics correctly.

The initial wavepacket is shown in Figure 7 at an

early time. The plot shows contours of constant amplitude

for the envelope field in real space on a 64x64 point

grid. In physical units, the wavepacket contains waves

with wavenumber k° = 0.01 kDe, where k points in the
0e -.

z-direction. However, rather than belabor the physical

dimensions, we will express distance in terms of grid

units Ax (Ax is about 100 XDe) and time in the dimension-

less units of the equations (one unit, T, is 220 electron

plasma periods). The wavelength of the wave is about

5Ax, although this periodicity does not appear in the

pictures which plot only the modulus of E. The packet

widths, L, which are initially the same in both dimensions,

are about 2Ax, as seen in the picture.

With no magnetic field, the group velocity, y, and

the spreading rates, a in the x-direction, and a in the

z-direction are

y = 0.4 Ax/T , a = 0.12/T , 8 = 0.12/T . (68)
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FIGURE 7. Initial linear Gaussian wavepacket in real
space. The contours represent regions of
equal electric field amplitude. The packet
envelope contains waves with wave vectors
centered about ko = 0.01 kDei. The labels

0 -i0

are scaled by 105, and the units are those
of Eq. (51). The hatch-marks inticate the
separation between points in the arid. There
are 64 grid units on each axis.
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FIGURE 7. Initial linear Gaussian wavepacket in real
space. The contours represent reqions of
equal electric field amplitude. The packet
envelope contains waves with wave vectors
centered about k = 0.01 kDe^. The labels
are scaled by 105, and the units are those
of Eq. (51). The hatch-marks inticate the
separation between points in the grid. There
are 64 grid units on each axis.
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At later time, T = 35, the wavepacket appears as in

Figure 8. The packet motion between T = 0 and T = 35 is

about 12 units, as expected from (68). The dispersive

increase in the packet widths should only be about 5%.

Most of the spreading in the direction perpendicular to

k. is due to the angular spread in k, which is Akx/ko -

1/4. Because the component waves travel in the direction

of their wave vectors, some of which are not parallel or

even nearly parallel to k as we previously assumed, the
-o

packet becomes distorted as it moves forward. This can-

not be avoided because the angular separation of modes is

inherent in the algorithm.

Nonetheless, this makes an interesting contrast to

the magnetized case, when wce = 0.03 w pe

y = 0.4 Ax/T , a 0.40/T , 5 = 0.12/T . (69)

Now the spreading in the perpendicular direction becomes

more significant. In 15 time units, the increase in

wavepacket width transverse to the magnetic field is over

600%, as can be seen in Figures 9a and 9b. By comparing

with the previous example, we can deduce that most of the

spreading of the packet in the pictures is due to the

magnetic dispersion. This is remarkable because the

magnetic dispersion is only three times the thermal

dispersion.

'.'.'
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7rr

FIGURE S. Electric field amplitude contours of the wave-

packet in Fig. 7 at later time, T=35 (7700
plasma periods). There is no magnetic field.
The packet has moved in the z-direction at a
speed determined by the Langmuir wave group
velocity. The spreading is mainly due to the
angular spread in wave vectors in the compon-
ent waves.

V
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FIGURE 9a) Wavepacket of Figure 7 at a time T=5 (1100
plasma periods). There is a magnetic field
in the z-direction. The spreading is prin-
cipally due to magnetic dispersion.



67

i i~~ ~~~~ I fe I I I w|w l w l l il l 9 9e 9 1 1w v IV V I I -T -7 " 1 1 1 1 r i T'T r " r4'

7..

. .

1A -L-.L1X-1
A- A * I I A * I *I * I I a 1 a || aI || a II1 1 I n I |1 a |1 pa~i I I I |1 1 I I| I * 1 kI lLS | i .| iii

FIGURE 9b) Wavepacket at later time, T=15 (3300 plasma
periods). The magnetic dispersion has caused
the spreading of the wave envelope in the
direction transverse to the field.

... ..F :. ....... -...... .l l l ..... .ii ........ .. ..'. . .. . '



I

68

In the above examples we have seen a wavepacket in

real space change its shape due to dispersion. It is

important to understand that in k-space there is no change

in wave mode amplitude: the plot of wave mode amplitude

in k-space is identical for all of the above figures.

What has happened is that the relative phases of these

modes (initially the same) change with time and mix in real

space to produce a less localized packet. The reason that

there is no change in amplitude of the wave modes is that

in the linear regime, every mode is independent of the

others (principle of superposition). The next example,

though, is highly nonlinear. The instabilities which

result from the interaction of various wave modes are

evident from the behavior in k-space.

Nonlinear Instability

Equation (52) has the following exact one-dimensional

soliton solution:

E = Xs (&) exp[i(k x-w ot) , (70)

where

*s = [(l ' v2 )2] / sech / ,

ns = -2X sech2

S=x-vt , A= (ko2-w O) , v =2k .

0 0
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The nonlinear Schroedinger equation, (54), also has a

soliton solution for which s = /V2 sech J- . These

soliton solutions can be verified by substitution. (See

Scott, Chu, and McLaughlin, 1973, for a general discus-

sion of the derivation and properties of solitons.)

Although the nonlinear terms are large, they are exactly

balanced by dispersion.

An interesting question arises as to whether or not

this solution is stable. Several investiqations of this

problem have appeared in the literature (Zakharov and

Rubenchik, 1973; Yajima, 1974; Schmidt, 1975; Pereira,

Sudan, and Denavit, 1976). The stability is investigated

by perturbing the soliton:

E = (Es + 6E) x

n = n + 6n , (71)

with SE and 6n such as

6E - [ff() + ig(E)] exp[i(k x-w t)] cos k y exp(yt)

6n = n({) cos k y exp(yt) .

Schmidt shows analytically that there is no marginal

stability (y = 0) for finite k . Zakharov and Rubenchick±
use the perturbation theory on the nonlinear Schroedinger

equation (54), and find that for k2 << X, the transverse

perturbations will grow at the rate y2 4k 2X. They
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agree with Schmidt that the instability should peak

somewhere around 'max X2 when k 2 _ X. Although in

numerical work, Pereira et al. find a similar maximum

growth rate, they do not observe any strong dependence

on k

We can see the instability ourselves using the two-

dimensional code. First we construct the one-dimensional

soliton according to the above analytic forms for the

electric field envelope and density. For simplicity, we

choose V = 0 so the soliton remains stationary. The

initial conditions are plotted in Figure 10. Each unit

length, Ax, corresponds to 85 XDe' and each unit T is

220 plasma periods. The parameter / = 0.5 gives the

soliton a half-width of about Ax, and amplitude E =

_ 0.01. Notice that the contours are parallel to

the y (transverse) direction, so that the initial condi-

tions are truly one-dimensional. In k-space, all of the

wave amplitude is on the k -axis. That this is a valid

solution to the equations can be demonstrated by solving

the equations numerically. After a significant lapse of

time, at T = 100, the initial conditions have evolved

unchanged, as seen in Figure 11.

Now we can test whether this is a stable solution.

First, we can test for stability to perturbations in the

x-direction by adding a small amplitude random noise to

each k-mode on the k -axis. This noise adds an
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FIGURE 10. One-dimensional soliton. Contours connect
regions of equal electric field amplitude.
The dimensionless units are those of Eq.
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FIGURE 11. Soliton after T=100 (22000 plasma periods).
Since it is essentially unchanged from T=0,
this demonstrates that it is an exact solu-
tion to the wave equations.
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insignificant amount of energy to the system: less than

10 of the total energy. The soliton is stable to these

perturbations after 50 time units, as seen in Figure 12.

Next we put the small amount of random noise in all

of the k-modes, including the transverse modes. Now the

soliton is dramatically unstable, as seen in Figures°13a,b.

But rather than becoming unstable to growing wave-like

perturbations (corresponding to the fastest growing k of

the linear perturbation theory), the soliton evolves in a

very nonlinear way to "collapse" to smaller and smaller

length scales. Although the perturbation theory is

correct in predicting transverse instability, it is not

capable of describing the collapse process. Computer

simulation is sometimes the only recourse in this highly

nonlinear regime.

Something very interesting happens when a small

magnetic field in the x-direction is introduced. When

Wce/Wpe = 0.03, the thermal dispers,.in is roughly one-

half the magnetic dispersion:

3k2V 2 3X/k 2

e De 1
2 2(72)

Sce wce /pe

The effect on soliton stability is seen in Figures 14a,b.

The magnetic field evidently slows down the collapse,

because at T = 40 the soliton is still in the early

.nstability stage. The soliton does eventually collapse,

• :iter time, T = 50. Notice that the magnetized

.m,&
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FIGURE 12. Soliton at T=50 (11000 plasma periods)

after-being perturbed in the x-direction.
This demonstrates that the soliton is stable
to one-dimensional perturbations.
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FIGURE 13a) Soliton at T=30 after being slightly per-
turbed in the y-direction. It is clearly
unstable to these perturbations.
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i FIGURE 13b) The perturbed soliton at later time, T=40.

The initial perturbation has disrupted the
soliton and nonlinear processes are causing
a localized region of intense fields to1. form.
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I i!

FIGURE 14a) Soliton at T=40 after being slightly per-
turbed in the y-direction. There is a III
magnetic field in the x-direction. It is
still unstable, but the instability is
slower than with no magnetic field (compare
with Figure 13).
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FIGURE 14b) The perturbed soliton in a magnetic field
at T=50. The geometry of the collapsing
core is clearly affected by the magnetic
field.
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collapsing soliton is more elongated transverse to the

field than the unmagnetized one. The magnetic dispersion

has the same effect on the linear wavepackets. However,

the difference in this case seems to be due to changes

in the spectra of the growing modes, not just the phase

behavior.

Summary of Magnetic Effects

From this brief examination of linear wavepackets

and soliton stability, we can make the following state-

ments concerning the magnetic field:

1) New physical effects can occur when the magnetic

dispersion term exceeds the thermal dispersion term. Let I
k be some inverse scale length in the problem. Then the

magnetic fiel.d becomes important when

w2 >32v2 (7ce e (73)

This may occur when the ratio of the electron cyclotron

frequency to the plasma frequency, wce /Wpe is still a

very small number.

2) The magnetic field tends to elongate wave

structures in the direction perpendicular to the magnetic

field.

3) One-dimensional solitons "collapse" when

two-dimensional behavior is allowed, but this collapse

takes a longer time in a magnetic field than without it.



CHAPTER IV

PARAMETRIC WAVE INSTABILITY

Nonlinear wave physics is of great interest in the

study of Type III solar radio bursts. The production of

electromagnetic radiation near the plasma frequency

(fundamental) and at twice the plasma frequency (harmonic)

during the bursts is due to the interaction of intense

Langmuir waves with ion density perturbations and other

Langmuir waves. The source of the intense Langmuir waves

is a beam plasma instability caused by a high speed

electron stream emitted from the sun.

The stability of the electron stream out to distances

of the earth's orbit has been an interesting problem since

Sturrock (1964) pointed out that quasilinear theory pre-

dicts that the stream loses its energy to Langmuir waves

very close to the sun. Further calculations, taking into

account the inhomogeneous nature of the stream (but

ignoring wave-wave interactions) show that the stream can

reabsorb Langmuir waves and continue to propagate outward

(Baldwin, 1964; Zaitsev, Mityakov, and Rapoport, 1972;

Zaitsev, et al., 1974; Magelssen, 1976; Grognard, 1975;

Magelssen and Smith, 1977; Takakura and Shibahashi, 1976).

However, since the wave levels in the inhomogeneous
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quasilinear calculations are still very large, nonlinear

wave phenomena might occur. But studies of induced

scattering of Langmuir waves (Sturrock, 1965; Kaplan and

Tsytovich, 1968) and wave instability have not indicated

important roles for these kinds of wave processes in pre-

venting the quasilinear relaxation (Zheleznyckov and

Zaitsev, 1970; Smith and Fung, 1971; and Hayvaerts and

de Genouillac, 1974).

Recent work on the role of nonlinear waves in the

evolution of Type III Langmuir waves has centered around

two different theories. Smith, Goldstein, and Papadopoulos

(1979) propose the following scenario for the nonlinear

wave processes:

1) The electron stream from the sun associated with

Type III bursts causes the growth of plasma waves resonant

with the beam;

2) Resonant "pump" waves continue to grow until the

energy density reaches the threshold of the oscillating

two stream instability (OTSI);

3) The OTSI transfers wave energy to plasma waves

with lower phase velocity. The instability causes growing

ion density waves as well;

4) The buildup of the ion density fluctuations has

two effects: a) the reduction of the threshold for the

instability, and b) the scattering of long wavelength
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Langmuir waves to shorter wavelengths (anomalous

resistivity effect);

5) Eventually, Landau damping at the shortest

wavelengths balances the scattering.

Goldstein, Smith, and Papadopoulos (1979) do

numerical calculations with this theory to model Type III

bursts. All of this work is in one dimension.

Nicholson, Goldman, Hoyng, and Weatherall (1978)

solve the nonlinear plasma wave equations numerically in

two dimensions. Although ignoring quasilinear effects,

the treatment includes all of the wave-wave effects ccn-

tained in the equations: the decay instability, the OTSI,

modulational instabilities, and nonlinear "collapse." The

scenario of this theory is as follows:

1) Langmuir waves grow linearly due to the beam

instability, and have a finite bandwidth in k-space both

parallel to the stream direction and perpendicular to it;

2) When the waves reach a significant amplitude,

wavepackets begin to "collapse," resulting in a wider

spectrum in k-space, and intensifying solitons in real

space;

3) A statistical steady state may be established as

solitons collapse, damp out (through Landau damping), and

form, leading to a saturation of electrostatic energy.

In both of the nonlinear wave calculations, the

saturation of the beam instability occurs in less than

1.
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a second. Because the anomalous resistivity lowers the

threshold for the OTSI, Smith, et al. (1979) conclude

that quasilinear relaxation does not occur. Nicholson,

et al. (1978) find that the wave levels of the nonlinear

wave theory are still comparable with those given by

inhomogeneous quasilinear theory. In many respects, the

two theories are far apart.

One of the central issues is whether or not the

nonlinear wave evolution is in one dimension, since includ-

ing another spatial dimension introduces completely differ-

ent physics. We saw in the last chapter that stable soli-

tons occur in one dimension, but collapse rapidly in two

dimensions. Although it may be correct to treat parametric

instability as the dominant nonlinear wave process in one

dimension, in more dimensions collapse can occur before

the parametrically excited waves buildup to significant

amplitude.

The one-dimensional treatment originally derived from

the use of the dipole approximation for the beam driven

Langmuir waves (Papadopoulos, Goldstein, and Smith, 1974;

Smith, Goldstein, and Papadopoulos, 1976). As a result

of this approximation, the OTSI figured prominently and

occurred along the beam direction. However, Bardwell and

Goldman (1976) showed that the OTSI will occur in a direc-

tion perpendicular to the beam as a result of finite wave-

number effects. They also found a decay instability, and
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a modulational instability in a forward cone around the

beam direction. In later work, Smith, et al. (1979)

continue to use the one-dimensional approximation and the

dipole geometry of the OTSI: they argue that broadband

effects suppress off-axis instability and raise the

threshold for the decay instability. Furthermore, they

never consider two-dimensional effects of plasma collapse

because the magnetic field is presumed to prevent collapse

in the direction perpendicular to the field (Papadopoulos

and Freund, 1978; Smith, et al., 1979).

Below we will examine more carefully the assertions

used to justify a one-dimensional treatment, and show why

they are not adequate. We will find that 1) the parameter

regime for which the instabilities are intrinsically one

dimensional are not generally applicable in Type III

theory; 2) the background magnetic field does not suppress

transverse instabilities; and 3) the broadband pump does

not prevent the transfer of energy into unstable modes.

Instability Geometries in the Type III Problem

Large amplitude Langmuir waves are unstable because

perturbations in density cause modulations in the natural

frequency of oscillation of the Langmuir wave and lead to

parametric instability. The instability is due to the

coupling together of a number of wavemodes. If an intense

Langmuir wave has frequency w0 and wavenumber ko , a low
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frequency density wave with frequency w and wavenumber k

will modulate the frequency of the Langmuir wave (because

the frequency depends upon density) and couple to other

Langmuir waves at frequency and wavenumbers (w +w, k +k)
0 0

and (w o-w,ko-k). The electric fields from these waves

can beat with the Langmuir wave field to cause a modulation

of the ponderomotive force, and the growth of the density

waves. The instability results in parametric excitation.

The standard parametric theory (Nishikawa, 1968;

Nishikawa and Liu, 1976) involves a number of approxima-

tions. If there exists a single large amplitude wave in

the plasma, then the nonlinear terms in the wave equation

may be lineariezed to be first order in the amplitude of

this wave. This is justified only when the non-resonant

waves are linear waves, and the resonant waves form a

sufficiently narrow wavepacket about the central wave vec-

tor. Then the nonlinear processes can be assumed to be

dominated by a single large amplitude pump wave. Second,

the only Langmuir waves generated by the modulation of the

pump waves are the waves at (w ±w,k ±k). Other waves are

assumed not to be resonant and have negligible amplitude.

This means that waves such as (w+2w ,k+2k ) have to be

well removed from the linear dispersion curve for Langmuir

waves.

The coupled wave equations result in new normal modes

described by the dispersion relation (Weatherall,
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Nicholson, and Goldman, 1979):

2 + k2 = k2 1E012
1

I U+ 2

w+(iv e/2)-2k. ko+k2 +2 (k2/k2)7

Notice that the left side of the equation is the Fourier

transform of the linear wave operator of the ion-acoustic

wave. The denominators of the terms on the right side

are the Fourier transforms of the linear wave operator of

the Langmuir wave envelope evaluated at k +k and k -k--O -- 0O

(upshifted and downshifted from k of the pump wave). The--o

angular terms are + 2 = (ko ±k) 2/1k o k12.

A dimensionless pump strength is usually defined as

the ratio of the pump wave energy density to the particle

thermal energy density:

S2/ I 12

= (75)
nnoT (3/4n) (mi/m

0 i e

Because the real and envelope fields are related by

9 = 2Re[E exp(-iw pet)], this definition of pump strength

will give one-quarter the strength used by Bardwell and

Goldman (1976) and other work. Therefore, we define W,

the dimensionless spectral energy, to be
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4 E0 (76
W = (3/4n) (mi/me) (76)

This definition is consistent with the common usage. F
The normal frequencies, w, which have a positive

imaginary part, are growing in time and are unstable. The

instabilities described by this dispersion relation with

Wce = 0 have been described in great detail in Bardwell

(1976) and Bardwell and Goldman (1976). We will elaborate

on only one point; that is, the circumstances for which

the unstable wavenumbers, k, are larger than the pump

wavenumber, k . The premise that k >> k is an important

condition in the one-dimensional treatment of parametric

instability. We will investigate this question by examin-

ing the behavior of the OTSI under different sets of

parameters.

The geometry of the purely growing instability is

determined by the values of the pump energy and wave-

number, W0 and kO  If W0  10 k'0
2 , as is generally the

case for Type III parameters, then the instability will

have k << k0 , and have a maximum growth rate perpendicular

to the pump wave vector. On the other hand, with

WO >> 10 k 0
2 , then k >> k0 , the maximum growth rate is in

the direction of the pump wave vector, and the instability

is essentially one dimensional as in Smith, et al. (1979).
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In either case, the OTSI involves two Langmuir

daughter waves. The instability occurs when the upshifted

and downshifted waves beat with the pump wave at nearly

the same freuqency. The frequency mismatch, or the beat

frequency, 6+1 for the two waves is

= pe-L(k-±k)

3 2 22
= - (k X ) W + 3(k-ko (77)

e pe -oXe )pe

In the dipole limit, a) k >> ko , both daughter waves have

nearly the same mismatch because of the smaller wavenumber

of the pump wave, ko . The threshold for instability is

3k2  e (Smith, et al., 1979), Because k >> ko, thisW ~~> 03k3 N

2 2
threshold condition implies W 0 3k /k De In the other

limit, b) k<<k, the mismatch frequencies are made equal

when k _ ko (Bardwell and Goldman, 1976). The fastest

growing wavenumber for this instability is given by

kXe = (W /12). (78)

Since the wavenumber k is assumed to be much less than

k , this requires W °  12 k 2/k2
o o De*

Hence, we arrive at the important conclusion that as

the pump strength W° increases, the OTSI goes from case

b) to case a).

M-V. ~---.
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We can demonstrate the validity of these conclusions

by solving the wave equation (52) numerically to find the

change in amplitude of the various k-modes with time.

This is not exactly the same as solving the dispersion

relation. No approximation has to be made in choosing the

set of wave modes such as the truncation scheme used to

limit the analytic treatment of four waves. The computer

program treats all of the waves. We find, however, that

the growth rates derived in this way are consistent with

those found from three and four-wave theories.

There is a further subtle difference between this

numerical simulation and the solution of the dispersion

relation. Because the dispersion relation is symmetric

under the transformation (w,k) - (w*,-k), an anti-Stokes

wave at k +k has the same growth rate as the Stokes wave

at k -k. However, as pointed out in Bardwell and Goldman

(1976), the anti-Stokes wave, if it is off-resonance,

attains much less amplitude than the resonant Stokes wave.

In fact, what happens in the numerical simulation, which

starts with the same initial amplitude (noise) in all

modes, is that the Stokes wave quickly attains steady

growth rate. Because the contour pictures discussed below

depict the largest amplitude growing modes at early times,

the nonresonant modes, even though they may later have

large growth rates, do not appear. Actually, the numerical

simulation is a better representation of the physics than
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the linear dispersion relation. The use of linear growth

rates to model the time evolution would result in

unphysical amplitude of the anti-Stokes modes.

Consider the case that the pump wavenumber is

koXe = 0.01. This corresponds to Type III excited Langmuir

waves at 1/2 A.U. A small amount of random phase noise is

put into all modes except the single pump mode, which has

very large amplitude. In Figures 15a-d we show the wave

growth rates for different values of W after 15 time units

(3300 plasma periods). The arrow, which is four grid

units Ak in length, represents the wave vector of the pump

wave. Table 4 summarizes the numerical data.
-4 2. h

In Figure 15a, W is I0 , so W° << 10 ko0 The

spectra of Langmuir waves with wavenumbers less than k0 is

due to a four-wave decay, or modulational instability.

The position of these modes at wavenumber k /3 can be

confirmed analytically (Bardwell and Goldman, 1976;

Nicholson, et al., 1978).

As the pump energy is increased to W = 10 (Figure

15b), the growth rates become larger, and the region of

physically significant growth begins to include previously

nonresonant modes.

When W is 3-10 - 3 (Figure 15c) so that W ° > 10 k0
2,

we see a change in the geometry from Figures 15a,b. The

OTSI with k _ k o is evident, as well as forward and

backward scattering instabilities which might also be

k~J i
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FIGURE 15a) Parametric growth rates in k-space for
Langmuir wave excited by pump mode indicated
by arrow. k0 = 0.01 kDe and =

Regions of maximum growth are due to a four-
wave decay instability. The contours repre-
sent regions of constant growth rate from 0

to l.5x10- W 'pe at intervals of 0.73x10-5

W pe* Maximum growth rate is l.Bx1O 5  pe

I,
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FIGURE 15b) Parametric growth rate contours in k-space

for ko = 0.01 kDe and W o = 10 -  Contours

are for growth rates of 0 and 7.3x10 5 WPe.

Maximum growth rate is 12x10- 5 Wpee
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FIGURE 15c) Parametric growth rate contours in k-space I
for k 0= 0.01 k De and W0= 3x10_3 . This is

an intermediate regime for which four-wave
instabilities occur both parallel to and per-
pendicular to the pump wave vector. Contours
are for 0 and 15x10-5 W pe* Maximum growth
rate is 30xl0 Wpe*
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FIGURE 15d) Parametric growth rate contours in k-space

for ko = 0.01 kDe and W° = 10- 2. The dipole

geometry of the OTSI is prevalent in this
example. Contours are for growth rates of

0, 30x10- 5 Wpe and 60x10- 5 W pe Maximum

growth rate is 70x10 wpe
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TABLE 4

NUMERICALLY DETERMINED PROPERTIES OF PARAMETRICr

INSTABILITY FOR k = 0.01 k DeAND VARIOUS

VALUES OF PUMP ENERGY

W k, X k X y/W
p Ie i e pe

o-4-.002 0 0.9x10-5

+.003 0 1.8X10-5

10 ~ -.005 0 12.0x10 5

+.003 0 8.7x10 5

3xl10 3  -.010 0 30.0xl10 5

+.032 0 23.0x10-5

.010 .007 17.0x10 5

lo-2 -.015 0 68.0xl10 5

+.032 0 65.0xl10 5
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associated with an OSTI instability. Because this example

falls between the analytic limiting cases for the OTSI,

probably neither of these instabilities is "purely

growing."

Finally, in Figure 15d,W is 10- 2 and W 10 k 2

The instabilities produce a spectrum of Langmuir waves

nearly symmetric in k-space and with wave vectors parallel

to and larger than the pump wave vector. This is the

dipole limit of the OTSI. Notice that the energy in the

pump wa-,e is very large--over two orders of magnitude

larger than the saturation level of Magelssen's inhomo-

geneous quasilinear model.

These results for large W are in good agreement0

with other work, such as Freund and Papadopoulos (1980),

which correctly treats the finite wavenumber pump. On

the other hand, the descriptions of the nonlinear wave

processes given in Smith, et al. (1979) and Goldstein,

et al. (1979) require instabilites which produce wave-

numbers much larger than k0, so their treatment is self-

consistent only for very large W, i.e., W > 10- 2 at

1/2 A.U. Closer to the sun the wavenumber of the beam

resonant waves is larger because the temperatures are

higher; then the energy density which must exist to

produce a dipole geometry is even larger.

II
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Magnetic Effects

There is a substantial body of literature concerning

parametric instabilities in a magnetized plasma; see,

e.g., Kaw (1976), Porkolab and Goldman (1976), Kaufman

and Stenflo (1975), Sanuki and Schmidt (1977), and Dysthe

and Pecseli (1978). Nevertheless, most applications of

parametric instability theory to Type III bursts have not

treated magnetic field effects systematically. The first

work including the magnetic field in the wave-wave inter-

actions of Type III bursts was Weatherall, Goldman, and

Nicholson (1978). The subsequent paper by Weatherall, et

al. (1979), which generalizes the work of Bardwell and

Goldman (1976), discusses the role of the magnetic field

on the parametric instabilities in the lower solar corona.

We will review the results below.

The parametric growth rates in a magnetic field are

found from the dispersion relation (74) with finite wce*

The effect on the high frequency wave is included ex-

plicitly in the denominators on the right side. The terms

involving wce are due to magnetic dispersion. We find

that the magnetic field has an important effect on the

low frequency wave only when k 1/k < (m e/m i) In order to

make this effect explicit, we must rewrite the low fre-

quency operator in terms of the kinetic susceptibilities

Xe for electrons and Xi for ions (Bardwell, 1976; Kaw,

1976; Weatherall, et al., 1979). In dimensional units:
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w2 + 2ivt - k2Cs2 + W (79)Xe(wk) Xi(w,k) pi

The magnetized kinetic susceptibilities for species s are

given by Bekefi (1966):

Co
Xs I 1-+as s In (sZcs

= k2  2 [- + e E n (a 5)Z sn k v

e n=- i s

s / k1vS

kv s
a = is (80)

cs

In are modified Bessel functions, vs the thermal speed of

species s, and Z the plasma dispersion function (Fried

and Conti, 1961) which arises because the background

electron and ion distribution functions have been taken

to be Maxwellian.

The ions are unmagnetized if kv i >> ci and w >> wci

Then the ion susceptibility simplifies to (Montgomery,

1971):

xi 2 1 2 [l + iZ( i )] (81)
k X.1 11

In the limit of "cold" ions, kv. << W,1

2
Xi = 3 (k v. >> Wci w >> kvi) (82)

W 2
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But, for equal electron and ion temperatures, the plasma

dispersion function must be evaluated numerically because

Ci ~ 1. In that case the imaginary part of Xi is of the

same order as the real part of Xi . The large imaginary

part causes heavy damping.

The susceptibility for electrons has two interesting

limits. eirst, when e >> 1, the electron susceptibility

reduces to its unmagnetized value:

2De

Xe = k ' (w << kv1e) (83)

In the other limit, e<< 1, the electrons are strongly

affected by the magnetic field:

2
=ce 2

Xe = ' (w >> kvvk I kv << ce) (84)

pe

This is smaller by k 2v 2/ 2 the ratio of the thermalTi e ce

gyroradius to the transverse wavelength, compared with

the unmagnetized value.

The transition between the two limiting cases occurs

when w - k1ive. Evaluating w at the ion acoustic frequency,

we find that this occurs when

--M. (85)

Therefore, when k 1/k is smaller than this value, the

electron motion is affected by finite Larmor radius

effects. This result shows that this mathematical
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treatment of the ion-acoustic waves in a weakly magne-

tized plasma is consistent with the physical model dis-

cussed in the second chapter.

We have solved the dispersion relation numerically

for growth rates using the following parameters for the

lower solar corona, at 1.1 solar radius:

n = 108 cm- 3 , T. = T = 140 eV ,e 1 e

Wpe = 5.64x108 s  k = 0.05 kDe , W = 3.10 -
.

The calculation was done for two values of the electron

cyclotron frequency: wce = 0 and Wce 0.1. The latter

corresponds to a magnetic field of 3.2 gauss.

For the unmagnetized plasma, we can reproduce the

growth rate contours of Bardwell and Goldman (1976) as

seen in Figure 16. The are three distinct unstable

regions. The backscattered waves are unstable to the

parametric decay instability. The oscillating two-stream

instability (OTSI), for small k perpendicular to k0 , has

a real frequency much less than its growth rate. The

remaining "rabbit ear" structure is due to the stimulated

modulational instability, which connects smoothly with

the OTSI. These instabilities are discussed in detail

by Bardwell and Goldman (1976). With the kinetic damping

used here, we find that the growth rates are slightly

higher, but within a factor of two of the fluid growth

rates of Bardwell and Goldman (1976). The maximum growth
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rate for all three instabilities is near y = 10- Wne

For the calculation with w = 0.1, we use the
ce

magnetized electron susceptibility (80). The magnetiza-

tion produces some changes in the growth contours (see

Figure 17). The most evident is the squeezing of the

k-space contours so that they lie closer to the axis

parallel to Bo, and the suppression of the OTSI. The

magnitudes of the maximum growth rates for the parametric

decay and stimulated modulational instabilities remain

the same. There seem to be two effects of including the

magnetic field. One arises from the new frequency match-

ing of the waves which causes the shift in k-space and is

responsible for the compression of the growth contours.

The other is the decrease of the low frequency electron

response with increasing magnetic field, in particular at

angles nearly perpendicular to the background magnetic

field. This causes a reduction of growth rates seen in

the OTSI.

To understand the shift in wavenumber space of the

growth contours, we can do an analysis for small values

of W ce , so that the shift Ak is small, Ak << k. When the

wave-wave interaction involves a near resonant Langmuir

mode, such as the anti-Stokes mode, k - k, then the term--O

on the right side of the dispersion relation associated

with this mode is very sensitive to changes in frequency

and wavenumber. This is because the denominator involves
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the near cancellation of two relatively large-terms,

w and 6. Recall that 6 is the difference in frequency

between the pump wave with frequency w0 (k0 ) and the

oblique Langmuir wave with frequency wL(ko-k):

ma g  3 • 3 2 1 2 2 (86)
k(h_) 3k k- ca (1-

With no magnetic field, the,-,frequency mismatch is

6 unmag(k) = 3kk - 3 k 2  (87)

Also, the real part of w can generally be assumed to be

near the ion-acoustic frequency (except for instabilities

which involve the anti-Stokes wave also), and the imagin-

ary part is the growth rate. Therefore, in order to

maintain a given growth rate when the magnetic field is

added, a shift Ak is necessary so that the difference

w - 6- is not drastically changed. This means that

WR(k) - 6unmag() = WRQk+Ak) - mag_ (k+Ak)_ (88)

We can find, for small Ak and wce' that

=1 2 23Ak.(kok) = Wce(l_1 ) + C_ (k+Akl-Ik1) . (89)

The last term will be small when jk -kl/kDe >>(me/M i)

If we deduce that the shift Ak is along the direction

of the Langmuir wave vector, ko-k, then we find that the
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new Langmuir wave vector is shortened by Ak, where

2
Sk _1 ce sin 26 (90)

k_o-I 6 2I _-kv 2

This simple result shows that the fractional change in

wavenumber is just the ratio of magnetic dispersion to

thermal dispersion. The magnitude of the change is pro-

portional to w and sin 2e, where e is the angle between
ce

Bo and k +k. This behavior is observed in the numerical

calculation.

The low frequency effect is best observed for the

OTSI when k is nearly perpendicular to Bo. If we assume

the frequency is much less than the ion-acoustic frequency,

we may ignore ions, and the dispersion relation, with

U = 1 yields the growth rate

= -iwoi + i - k 2 6ReX - 62) (91)

= k2 4k

Unmagnetized, ReXe = k2 /k . Even with a magnetic field,
e De

Xe is approximately the same except for wavenumbers

within angles (me/mi) of perpendicular. For these

angles ReXe is much smaller, which causes the growth

rates to be smaller. In the case that k is directly

perpendicular to Bo,

ReXmag k2v 2
ee<< 1 .(92)

^. unmag 2
e ce

Lao
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This leads to suppression of the instability. In fact,

this branch ceases to exist for magnetic fields such that

Wce/wpe > 0.005 when W = 10- 4

Besides the longitudinal decay waves, there also

exist a number of potential electromagnetic decay pro-

ducts. Some specific examples were considered in the

second chapter. We concluded that the longitudinal ion

acoustic wave had the largest effect in modulating the

high frequency wave and producing instability. Of course,

in a particular region of wavenumber space, an electro-

magnetic instability can have the largest growth rate.

For example, where the OTSI is reduced to zero growth

rate by the weak magnetic field, the region of k-space

which formerly contained the OTSI can now support a

parametric instability involving a magnetosonic wave.

However, the growth rate will be smaller than other

growth rates found above for the weakly magnetized case.

Thus, there is no indication that electromagnetic effects

would change the overall growth rate picture.

We have studied the effects for other values of

the magnetic field using numerical simulations. When

Wce = 0.01 Wpe' there is virtually no change from the

unmagnetized growth rates except for the disappearance

of the OTSI. This is consistent with equation (90)

which predicts changes less than 1% in wavenumbers of the

unstable modes. For w = 0 and w = 0.1 W per
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the numerical simulations show good agreement with the

above growth rates derived analytically from the dis-

persion relation.

Related work by Freund and Papadopoulos (1979)

examines magnetic field effects on Type III generated

instabilities at 1/2 A.U., but they use questionably

large values of pump energy (W° = 10
- 3 , 10-2). Since

W >> k 2 , this regime is different from ours as ex-0 0

plained above. They ignore the effect of the magnetic

field on the low frequency motions. Generally, this

work agrees with ours in showing a shift of unstable

wave vectors to smaller perpendicular wavenumbers.

While they conclude that a small external magnetic field

acts as a stabilizing influence for waves with finite

kI, we consider this to be an overstatement since, apart

from the OTSI, growth rates with finite k do notI
decrease in amplitude.

Broadband Effects

If the pump energy is distributed in a number of

modes centered around the principal wave mode, the un-

stable waves might no longer experience steady growth.

This is because the frequency spread in the broadband

pump disrupts the ideal resonance conditions. Analytic

work which has been done for parametric instability with

a broadband pump indicates that when the resonance width



108

of the instability is smaller than the frequency of the

pump, the growth rates decrease and thresholds are in-

creased (Thomson and Karush, 1974; Valeo and Oberman,

1973; Bardwell and Goldman, 1976; Smith, et al., 1979).

We will examine these effects in a simulation of Type

III wave processes.

Because of the finite velocity and angular spread

in the beam, the beam excited modes will have a substan-

tial width in k-space. For the lower corona, we will use

half-widths 6k = 6k = 1/6 k0 , where k° = 0.05 kDe* The

initial condition for the numerical simulation is shown

in Figure 18a. There is also a small amount of amplitude

(noise) in all of the other k-modes. The total energy

in the pump modes is W0 = 310 . The k-space area of the

instabilities in Figure 16 is related to its resonance

width in frequency. We can deduce that the spread of

frequencies in the pump wave, Aw = 3/2[(k +k) 2-k 2] =

0.0014 wpe' is less than the resonance widths of the

decay instability, but larger than the width of the SMI.

The OTSI is irrelevant because it is absorbed within the

bandwidth of the beam modes. Therefore, we might expect

the effect of the broadband pump on the stimulated

modulational instability to be more severe than on the

decay instability.

After 150 time units, the spectra in k-space is as

shown in Figure 18b. There is substantial amplitude in

i
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y

-k max
y

FIGURE 12a) Initial wave amplitude in wavenumber space

for broadband pump centered at k.= 0.5 kDel
-4and with energy W = 3x10 - . Contours indi-

cate relative magnitudes. There is no

magnetic field.
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FIGURE 12b) Electric field amplitude contours in wave-
number space at T = 150 (33000 plasma
periods). The decay instability is causing
amplitude to incre tse in waves in the back-
ward direction. TIere is no magnetic field.

°I.



the backward direction due to the decay instability. The

k-mode of maximum growth is given by the three wave fre-

quency matching condition:

3 (ko-k) 23 ko2WL+A Cs = 0 (93)
SL-Wo +WA 2 ke 2 pe 2 k 2  pe

.De De
We find that k - k = -0.028 k De The numerically found

decay wavenumbers agree well with the calculated value,

and the numerically derived growth rate at this wavenum-

ber, Y/w pe = 1.7410-5 is within a few percent of the

theoretical growth rate given by y/wpe = W /16. We con-

clude that the growth rate of the decay instability is not

affected by the finite bandwidth for these parameters.

The growth of the modes driven by the stimulated

modulational instability is about 40% less than in the

monochromatic case. The numerically determined averaged
-5

growth rate (in the broadband case) is y/w = 0.69-10.pe

Although this is not much smaller than the decay insta-

bility growth rate, after 3-104 plasma periods (T = 150)

the decay has undergone 3.6 e-foldings, and the modula-

tional only 1.4. This results in an order of magnitude

difference in amplitude, so the modulational instability

does not appear in the amplitude plots.

It is remarkable that the broadband pump does not

cause a large decrease in growth rates, even though the

spread in the pump frequency is two orders of magnitude

larger than the growth rate. This result differs from
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Thomson and Karush (1974) and Smith, et al. (1979). From

Thomson and Karush we would expect a decrease in growth

rate by a factor of y/Aw. However, they interpret the

growth rate y as the resonant width of the instability.

We find that the resonance widths of the instabilities are

much larger than their growth rates.

Because of the importance of the resonance widths, we

can speculate on a possible role of the magnetic field in

reducing growth rates. We have seen that the magnetic

field causes a decrease in perpendicular wavenumbers for

the decay instability. For some value of the magnetic

field, the transverse width will become less than the

bandwidth, and a decrease in growth rates, even on the

k -axis, could result. This has never been investigated.

For Type III parameters, the width of the decay insta-

bility, even with a magnetic field, is still larger than

the pump bandwidth. However, it may be an important

effect in the ionosphere or in laboratory experiments.

If we continue the numerical experiment, we find

that the pump modes quickly lose their energy to the

decay modes. These modes themselves are large amplitude,

and can drive other instabilities. In particular, they

can decay into Langmuir waves in the forward direction

at wavenumber kL = 0.016 ke" The k-space configuration

at T = 240 (5.104 plasma periods) is shown in Figure 18c.

We can see that the second scattering is occurring in the

.1.,1
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FIGURE 12c) Electric field amplitude contours in wave-
number space at T = 240 (52800 plasma
periods). The original pump has depleted,
but the decay waves are now themselves
driving a decay instability. There is no
magnetic field.
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forward direction as predicted. This nonlinear process

of successive decay is called cascade (Nicholson and

Goldman, 1978). Notice that although the cascade is

occurring along one dimension, the energy is going from

large wavenumbers to smaller wavenumbers. The flow of

energy to larger wavenumbers as postulated by Smith, et

al. (1979) does not occur by parametric instability. The

cascading can continue with another decay. The next

decay product will also be in the forward direction, at

kL = 0.005 kDe. However, this k is of the order of a

grid spacing, so unfortunately we must stop the simulation

at this point. Solitons might be able to form at later

times.

Summary

We have considered three subjects in the context of

Type III parametric instability: the dipole approxima-

tion, the magnetic field, and finite bandwidth. We find

that it is not correct to use the dipole approximation in

the Type III problem, unless W k 2 which implies

tremendous wave energies. The magnetic field causes some

new wave geometries, but does not limit growth of waves

transverse to the field. Finally, we have seen that

broadband effects limit the role of transverse instabili-

ties by reducing (but not eliminating) their growth.

However, the decay instability, which occurs on the
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k -axis, is not affected by the broadband nature of the

pump because of its large resonance width.

There are other nonlinear processes which are

enhanced by broadband effects and are intrinsically

two dimensional, but do not appear in the above example.

One is the constructive interference of Langmuir waves in

the real space to create wavepackets which undergo a direct

collapse. In the low solar corona, where ko/ke >

(m e/mi) , the wavepackets have a group speed larger than

the ion-acoustic speed, and collapse cannot occur without

some scattering, such as the multiple cascading in the

example above. For 1/2 A.U., when k° = 0.01 kD, the

wavepacket can collapse directly, thus bypassing the

stage of parametric instability altogether (Nicholson,

et al., 1978). This is the subject of the next chapter.

- 1



CHAPTER V

PLASMA WAVE COLLAPSE

Besides being unstable to perturbations, wavepackets

of intense Langmuir waves can experience direct spatial

collapse (Zakharov, 1972). This occurs because the wave-

packet creates a density cavity by ponderomotive forces

and as a result becomes more compact in space and more

intense in energy density. Collapse has been studied in

two and three dimensions when there is no magnetic field

and is found to continue until length scales become of

the order of a Debye length, when particle-wave damping

removes energy from the collapsing waves (Nishikawa, Lee,

and Liu, 1974; Zakharov, Mastrvukov, and Synakh, 1974;

Degtyarev and Zakharov, 1974; Degtyarev, Zakharov, and

Rudakov, 1975; Degtyarev and Zakharov, 1975; Pereira,

Sudan, and Denavit, 1977; Nicholson and Goldman, 1978;

Goldman and Nicholson, 1978). Langmuir collapse is

expected to occur in Type III radio bursts (Nicholson,

Goldman, Hoyng, and Weatherall, 1978), and may be impor-

tant for other beam-plasma systems such as a radar

modified ionosphere or situations in the laboratory.
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In one dimension, collapse is prevented because

dispersion can balance the nonlinear ponderomotive force.

Other solutions, such as pulsating solitons, are possible

(Goldman, Rypdal, and Hafizi, 1980). An example of a

non-collapsing nonlinear solution in one dimension is

the soliton discussed in the third chapter. When varia-

tion in a second dimension is allowed, the soliton

"collapses."

In physical problems, a weak background magnetic

field is often present. We have already presented a

linear stability analysis for monochromatic Langmuir waves

in the presence of a weak magnetic field in the fourth

chapter. What will be the effect on collapse? Some

speculation is based on the argument that the magnetic

field makes the wave interactions completely one dimen-

sional (an assumption which our work does not support).

If this were the case, then collapse might be prevented.

Some early work by Petviashvili (1976) seemed to show

stable, pancake shaped solitons. However, other specula-

tive arguments seem to minimize the role of the maqnetic

field in stopping the collapse (Nicholson, et al., 1978).

The first theory of collapse in a magnetic field

was done by Zakharov (1975). Of the three high frequency

plasma modes, he studied an electromagnetic slow extra-

ordinary mode. Therefore, this work has little direct

application to ours because we are studying beam-generated

,I ~
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Langmuir waves. However, he did suggest that collapse

at the Langmuir mode frequency will be possible.

A subsequent Russian paper by Krasnosl'skikh and

Sotnikov (1978) takes up the problem of the plasma wave

collapse. They assume 1) a dipole pump, 2) very large

amplitude waves, E1 2/4TrnT >> me/mi, 3) one-dimensional

fields, E Ii z, and 4) strongly magnetized ion-acoustic

modes. Their analytic work derives from linear stability

analysis and the construction of self-similar solutions.

First, they show that the modulational instability (OTS)

produces a pancake shaped cavity because the unstable

wavenumbers have k << k due to the magnetic field (see± II

also Freund and Papadopoulos, 1980). This is related to

Petviashvili's solution. Then they find that the cavity

collapses. As collapse occurs, the transverse dimension

of the cavity changes more rapidly than the longitudinal

dimension, until the latter is such that k /kDe > wc /Wn D ce pe

Then the cavity becomes symmetric and the magnetic field

ceases to have an effect on collapse. Numerical work by

Lipatov (1977), for the same kind of geometry and field

amplitude, confirms that the collapse is inevitable even

with a magnetic field. He does find, however, that the

magnetic field hinders the start of collapse.

Our work is fully two dimensional, treats a finite

wavenumber pump, assumes unmagnetized ions, and generally

involves weaker electric field energies. These are

-
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conditions relevant to the Type III problem. We follow

the collapse from early times, starting with wavepackets

produced by the beam instability. These wavepackets are

initially spherically symmetric. We find that collapse

in the transverse direction does not proceed rapidly when

there is a magnetic field, and in fact the Langmuir waves

evolve in such a way as to reduce perpendicular mode

energy. As a result, the wavepackets evolve into a pan-

cake shape. At this point contact can be made with Soviet

work. If we could follow collapse to the time when

Akl/kDe ~ Wce/Wpe, we would expect that the results of

Krasnosel'skikh and Sotnikov would apply. However, this

isnot possible because of the finite numerical grid. The

inability to follow the collapse to later times is a

serious limitation.

Besides being applied to different parameter regimes

and geometries, our work on Langmuir collapse uncovers

interesting new phenomena. As we shall demonstrate numer-

ically, even weak magnetic fields can prolong the time for

collapse of a broadband Langmuir wavepacket and alter its

geometry. This can have important consequences. If the

collapse times are prolonged sufficiently, they will

exceed characteristic times for Langmuir wave growth and

higher levels of strong plasma turbulence could be pro-

duced. Also, the altered packet shapes may affect the

pattern of electromagnetic emission and its polarization.
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We will show from a collapse virial theorem (Goldman,

Weatherall, and Nicholson, 1980) that the retardation of

the collapse is due to an altered geometry of the wave-

packet. In order to suggest how this new geometry can

be produced, we will apply perturbation theory to the

broadband initial conditions. Further arguments must

rely on the evidence of the numerical simulation.

Finally, we will be able to show that the measured

mean solar magnetic field can affect, but not prevent,

Langmuir collapse at 1/2 A.U.

Simulation of Type III Wave Processes

Langmuir waves in Type III bursts are expected to

grow linearly from a low level by interaction with the

electron stream and to have a finite bandwidth because of

the spread in velocity in the stream. As a result, a

pattern of intensifying Langmuir wavepackets will be

present in the solar corona whose spatial dimensions are

defined by the bandwidth of the randomly phased pump

modes. When these waves reach large amplitudes, they

will exhibit nonlinear behavior. One possibility is that

the wavepackets will undergo direct collapse. This is

possible at 1/2 A.U. because the group speed of the waves

is less than the sound speed, i.e., k /k < (m e/m i)

We can simulate these wave processes numerically

for 1/2 A.U. parameters. In k-space, we make a broadband

i.



121

pump consisting of 14 randomly phased modes centered

about a wavenumber kO = 0.011 k and with parallel and
o kDe

perpendicular bandwidths of Sk = 0.14 ko , and 6k

= 0.2 k . These modes are caused to grow exponentially

at a rate Y/wpe = 10-6, which is the growth rate due to

the beam as inferred from quasilinear calculations

(Nicholson, et al., 1978; Magelssen, 1976). Initially

the pump modes have an energy Wp 6-10 while the

other modes have even smaller amplitudes. We do a case

with no magnetic field (which was also done in Nicholson,

et al., 1978), and two examples which have a magnetic

field along the direction of ko such that: 1) wce =

0.01 Wpe' which represents an upper limit on the mean

magnetic field at 1/2 A.U. (Dulk and McLean, 1978); and

2) w ce = 0.05 Wpe"

The time evolution of the wavepackets into collapse.

is compared in Figures 19, 20, and 21. There are two

noticeable differences between the unmagnetized and the

magnetized cases. One is that the collapsing wavepackets

are pancake-shaped in the magnetized case, with the larg-

est dimension transverse to the field. This effect is

more pronounced for the larger value of magnetic field.

Also, the packets take longer to intensify in the magne-

tized examples. This time delay is significant for the

larger magnetic field case.
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One consequence of the nonlinear wave interaction

between the pump modes and other wave modes in the system

is that wave energy can be taken out of resonance with

the beam. In Figure .2 we plot the pump electrostatic

energy (W p) as a function of time. In all three cases

the pump energy saturates at a maximum value, and then

rapidly depletes. Although the resonant modes are still

being pumped, energy is being removed much faster than

it can be absorbed by the resonant waves. Since the rate

at which energy can be absorbed by the waves is propor-

tional to YWp, where y is the linear beam growth rate,

this depletion can have a stabilizing effect on the beam

and limits the amplitude of the Langmuir wave turbulence.

Therefore, we see the total electrostatic energy approach-

ing a steady value after the pump waves are depleted

(Figure 23).

The magnetic field causes a change in the saturation

level of the pump waves and the total electrostatic eneray.

Because the dominant nonlinear wave interactions are

slower in the magnetized cases, the beam can remain reson-

ant with the pump waves for a longer time before they

deplete. This results in the higher levels of Lanqmuir

turbulence. Further increase of the magnetic field should

not cause higher levels than we see in the case wce = 0.05

Wpe" We deduce this from another simulation (not shown

here) in which we forced the wave evolution to be one

' -. "......... 2a
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TIME (Plasma Period)

FIGURE 22. Pump electrostatic energy vs. time for waves
being driven at a constant rate. The three
curves correspond to three different values
of the magnetic field: wce = 0, 0.01, and

0.5 Wpe. There is steady arowth until the

pump waves saturate, and then deplete due
to nonlinear wave effects.
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FIGURE 23. Total electrostatic enerav vs. time in
plasma waves for a system driven by a beam-
plasma instability. The three curves cor-
resnond to three different values o-F the
maanetic field: w ce = 0, 0.01, and 0.05
W- The total eneray saturates due to-
pe

wave interactions.
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dimensional by putting no noise in the transverse modes

and using only two pump modes along the k -axis. Thex
saturated values for W and W were the same as in the case

W ce = 0.05 Wpe" Since the wave-wave interactions seem

to be increasingly limited to the longitudinal direction

for larger values of the magnetic field, this puts an

upper limit on how much the magnetic field can affect

the depletion of the pump.

In order to appreciate the role of various wave

interactions in the unmagnetized and magnetized cases,

we should examine the evolution of wave amplitude in k-

space. In Figures 24, 25, and 26 we can identify col-

lapse with the transfer of energy out of the pump modes

into adjacent k-space modes. In the magnetic cases,

the collapse seems to be inhibited in the direction trans-

verse to the field. The saturation of the beam insta-

bility can be associated with collapse. However, in the

process of collapsing, the wavepacket acquires wave

components which are parametrically unstable. This is

seen in the buildup of wave amplitude in modes near ko /3,

which is the position for the four-wave decay instability

at these parameters (see Figure 15a; also Nicholson, et

al., 1978). It is important to note that these modes

have not grown from the noise levels, which would take a

longer time, but grow exponentially prom the enhanced

levels produced in the collapse. The subsequent

rj
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k 0O.011 kD
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FIGURE 24. Electric field contours in wavenumber soace

at three times: (a) T = 4.3x10 5 ; (b) T =

4.4x1 5 , and (c) T = 4.8xlO 5plasma periods.

The wave modes within the box centered at

k 0= 0.01 k De are those beingr driven with a

constant crowth rate, y = 10-6 W .e The

contour levels indicate relative maanitudes.
There is no maanetic field.
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FIGURE 25. Electric field contours in wavenumber sDace

times: (a) T = 4.3x10 5; (b) T = 4.4xi5;

and (c) T = 4.8x10 5 olasma periods. Theh5

wave modes within the box centered at k
= 0.01 kDe are driven with a constant arowth

rate. There is a maanetic field w = 0.01

pe
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FIGURE 26. Electric field contours in wavenumber snace

at three times: (a) T =4.3x1 
5 ; (b) T =

4.4x10 ; and (c) T = 4.8x10 plasma periods.
The wave modes within the box centered at

k= 0.01 kD are driven with a constant

growth rate. There is a magnetic field

Wce 0.5wpe-



132

parametric excitation results in a very sudden depletion

of the pump. This does not appear to disrupt the col-

lapse, as we see wavepackets continue to intensity. In

fact, in the magnetized case, these instabilities seem to

play an important role in forming the pancake-shaped

wavepacket which preceeds the collapse.

Therefore, it seems consistent to attribute the

depletion of the pump waves to the decay instability at

modes enhanced by the collapse process, rather than

directly by the collapse itself, as suggested in Nicholson,

et al., 1978. This behavior is most evident in the

magnetized examples. It is also observed in a purely

one-dimensional code (Hafizi, 1980).

Scenario for Magnetic Collapse

From these simulations, and other initial value

computations (Goldman, Weatherall, and Nicholson, 1980),

we construct the following scenario for magnetic collapse

of beam generated wavepackets:

1) The collapse begins at the same threshold energy

as in the unmagnetized case. However, unlike the unmag-

netized case, the collapse transverse to the field is

inhibited, and seems to be slower. In real space, the

transverse dimension of the packets remain the same,
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although the longitudinal dimension decreases because

collapse is occurring in that direction.

2) Eventually, parametric excitation will occur to

produce a new k-space configuration. These instabilities

will be very intense because the background level of the

unstable modes has -been enhanced in the longitudinal

collapse. Because the scatter is principally in the

Bo-direction (as shown in the last chapter, and in

Weatherall, Nicholson, and Goldman, 1980), the wavepackets

are elongated in the transverse direction, as well as

continuing to contract in the longitudinal direction.

3) The new configuration in real space is a pancake-

shaped wavepacket which can collapse in both directions.

Although our simulations do not continue beyond this point,

the results of Krasnosel'skikh and Sofnikov (1978) show

that as collapse proceeds to dimensions for which

AkIl/kDe ~ wce/wpe, the wavepacket will tend to become

symmetric. After this point, the magnetic field will

have no further effect on collapse.

We have seen from computer simulations that at pump

values of W = 2.10-, even a magnetic field as small asp

Wce = 0.01 Wpe at 1/2 A.U. might cause pancake-shaped

wavepackets and slowdown of collapse of Type III generated

Langmuir waves. Later, we will show how these effects

scale with the wave energy and magnetic field. Now, by

use of a collapse virial theorem, we will show that the[ .I-
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increased collapse time is the result of the altered

k-space geometry of wave modes.

The Virial Theorem

In classical mechanics, an identity due to Lagrange

and Jacobi relates the time behavior of the mutual dis-

tances between masses to the value of the quantity 2T+w,

where T is the kinetic energy of the center of mass motion

of the particles and w is their potential energy (which

is negative in the case of gravity). If the so-called

virial quantity is positive, in an average sense the

masses will tend to separate from each other; if it is

negative, they will tend to get closer.

A virial theorem can also be derived in Langmuir wave

mechanics to describe the stability of a wavepacket

(Goldman and Nicholson, 1978; and Goldman, Weatherall,

and Nicholson, 1980). In this case, the time behavior of

the spatial width of a wavepacket is also related to

various wave energy quantities. Relevant field quantities

are defined as:

1 f (44vE12 1

S := j2 f 4(E*V.-- E V.E*) dr

1~2N fjE dr. (94)
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All of the above integrals are conserved by the nonlinear

Schroedinger equation (54). The first integral gives

the total field energy H, where the first term is due to

thermal dispersion and the second is from the nonlinear

wave interaction. The third term, HB, is defined as

HB = Q2 f4E'I2 dr , (95)

where the operator P.. = Sij - bibj, selects vector

components perpendicular to the magnetic field direction,

b. For illustration, consider a monochromatic Langmuir

wave of the form E = k0 exp(ik 0.x). The integrand of HB

2 .2becomes Q2/2 sin 8, where e is the angle between E and B

This, of course, is due to magnetic dispersion. The

other integrals give the wave momentum, S, and boson

number, N.

We will define the mean square width of the wave-

packet, <Sr 2>, by a spatial average with IE12/N as a

weighting function:

<6 >" (96)<52> f I N2 rr ~.

ro is the centroid position of the wavepacket. In two

dimensions, the virial theorem shows that

2 2 A - " (97)

The quantity A is invariant:
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2H
A .(98)

N N2

When there is no magnetic field, the condition for col-

lapse is that A < 0. With a magnetic field, the rate of

collapse is no longer constant because HB is not invariant,

BBand collapse is not assured even if initially A-2HB/IN is

negative. We can demonstrate numerically that a magnetic

field can cause the wavepacket to evolve toward smaller

perpendicular wavenumbers and cause H B to decrease. As

HB gets smaller and A remains constant, the collapse rate

will go from a large negative number (fast collapse) to a

smaller negative number (slower collapse). If the col-

lapse rate changes sign, which is possible if

2 H > AI, (99)

N

then collapse in two dimensions may be prevented. What

we find in numerical simulation is that at this point

other wave interactions, such as parametric instability,

take place and the virial theorem no longer applies.

These interactions seem to always lead to a situation for

which collapse can occur. We have seen this happen in

the numerical examples in the last section.

These points are well demonstrated in initial value

runs (Goldman, Weatherall, and Nicholson, 1980). For a

broadband pump of 21 modes with energy W = 3"10 - 4 (whichp
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is well above the threshold found in the growing pump

simulations), we find initially that
1

2HB 3

A - 17x10 -  , (100)
N

with or without a magnetic field, and

2 30 x .
(101)

- pe-

-3For wce = 0.1 Wpe' we find that 2H IN - 300.10-

Therefore, a change of only 5% in H B can inhibit collapse.

In Table 5 we show the behavior for 2HB IN during adiabatic

collapse for various values of the magnetic field. For

some cases, there is a significant decrease in 2HB IN,

enough to make A - 2HB IN positive. Above threshold, this

effect seems to occur when the magnetic energy is greater

than the nonlinear energy:

f 4dr. (103)

The result is a slowdown, or cessation of two-dimensional

collapse. In Figure 27 we plot the collapse times for

the various values of magnetic field. We find that the

collapse time increases with larger magnetic field

strength in a way consistent with the above theory.

1To convert to the system of dimensionless units
used in Goldman, Weatherall, and Nicholson (1980),
multiply by (n/ 3 )(m emi).

e
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TABLE 5

2HBIN x 10 DURING ADIABATIC COLLAPSE

ce pe-

T 0.01' 0.05* 0.075* 0.10"

10 3 74 167 229

20 3 74 162 224

30 4 72 157 220

40 6 71 145 207

50 11 73 132 220

60 77 117 197

7C 106 192

80 185

150 154

*21 mode pump.

**39 mode pump. U

_;
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FIGURE 27. Time for central energy density in collap)-
singT wavepacket to reach ten times its
initial value for various maanetic field
strengths. Initial value of the pumro is

W =3x10 4
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Magnetic collapse can take so long that wave interaction

time scales will be the same as for a one-dimensional

wavepacket.

For W, = 3.10 magnetic effects become observable

for Wce - 0.03 w pe" In the simulations of last section,

the pump only reached an amplitude of Wp = 2.10 -5 , less

by a factor of 10. In that case we found magnetic

effects when wce = 0.01 wpe' which means that (ce/W pe)2

is also smaller by 1/10. This scaling is expected from

Equation (99). This is quite different from the magnetic

effects on parametric instability, which did not depend

on pump energy, but occurred when

c__e k sine. (103)

Wpe kDe

These latter effects are purely geometric (Krasnosel'skikh

and Sotnikov, 1977; Weatherall, Goldman, and Nicholson,

1978; Freund and Papadopoulos, 1980). The new behavior

we have just described depends upon the energy in the

system.

We have seen that the decrease in H affects
B

collapse in a significant way. The computer simulations

showed us that H B decreases, and the virial theorem

enabled us to calculate the effect on collapse. However,

neither offers any elightenment as to why this occurs.

In the next section we will use a perturbation theory

to describe collapse. This will show that wave-wave

mat



141

transitions perpendicular to the field become increas-

ingly difficult for larger k because of the sin 2O

dependence in the magnetic energy term.

Perturbative Collapse Theory

We will do a time-dependent perturbation theory on

a simple broadband pump consisting of five pump modes

centered on k = k in a rectangular grid with spacing
0

Ak = A (see Figure 28). We assume that the interaction

is weak so that each pump mode amplitude, A, can be

considered constant, and the effect on the other modes

can be treated as a perturbation. The interaction is

described by the nonlinear term, (JE1 2 - E12 )E, in the

nonlinear Schroedinger Equation (54). To order A2 , the

perturbation theory shows the modulational instability.

The order A3 seems to be related to collapse.

We can write the linear wave equation as

-i tE = L0 E, (104)

where the linear wave operator L = V2- sin2e. The

vector nature of E has been ignored by assuming E k

This will cause small errors in the interaction amplitudes,

but in this theory only the phase difference between

modes seems to be critical.

I
St
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FIGURE 28. Pump modes 1-5 and test modes a, b in
broadband perturbation theory.
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In the absence of interactions, we can write E in

terms of its independent wave functions:

~4t
E=2 aU e- s  (105)S -=

all modes

For the pump waves, the amplitude as = A; for all other

waves, a << A. The spatial functions u are the ortho-s s

gonal wave functions

us = exp i ks- . (106)

For a finite grid, both k and x are discrete. Finally,-s

the phase factor, cs' can be found from the linear dis-

person relation, w = k2+n2sin 20. For the pump modes,

02 0

3 = k 2 +2k+2
03 = ko0 + 2ko0 + A2'

=k 0
2 + A2 + n2

05 
= ko2

and for the test modes,

Oa = k02 + 4 A2 + 4 2

b = ko + 4k A + 4 A2

" *. . A . . . . .. . .
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When ko >> , the angular terms are sine s  k s/k; so
0 yB 0

we have defined -2 = /k

Now let us include the nonlinear coupling due to

the "potential"

V = IEI2 - 1E2 1 . (107)

The time behavior is given by the nonlinear Schroedinger

equation:

-iatE = L E + VE. (108)

Because of the interaction, the nonlinear system has

different eigenfunctions. We can still write E in terms

of its old wave functions, but the coefficients a wills

vary with time. We find from Equations (105) and (108)

that

-i'st su -it
i s s e =

i a u e a aVu e
s s

and the potential V is

V aman*UU* e-i(-n)t

m n
m n

+i(m- n) t
+ a *a U mU 

e
m n m n

(the terms where m = n are subtracted out by the spatial

average). The amplitude of the i th mode, ai, is given by

- 1.
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-iai = 6 U[(ki-ks)-(km-k n)lasama n*

m n s

m#nK• e e- + 6[(ki-ks )+(k m-kn)]

i( (- )t +i(m-n)t
" asam*an e e (109)

The 6-functions assure that the spatial dependence of

the right side is the same as u.. This requirement is

essentially wavenumber matching between four waves.

We can do the perturbation theory for different

orders of the pump amplitude. To zero and first order

in A, the mode coupling is very small. The second order

case corresponds to the-usual linearization scheme when

there is only one pump mode, and describes parametric

instability. The third order theory describes the trans-

fer of wave amplitude from the pump modes to adjacent

modes (which is seen in the early stages of collapse).

This order does not occur in parametric theory because

one pump mode does not satisfy the wavenumber matching

condition. Although growth is not exponential, this

process can lead to large amplitudes in non-pumped modes

before parametric excitation can build up from small

background noise levels.

Below we examine two cases. First we will treat

the five pump modes as a single pump mode with amplitude

A = v5 A, and demonstrate that the theory contains the

I.
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2
modulational instability. This will involve only o(A2).

Next, we concentrate on the broadband effects by working

only with o(A3 ). Thus we assume that the collapse pro-

cess occurs before parametric instability. We derive

an a posteriori condition for the validity of this

treatment.

Modulational Theory, o(A 2

With the one pump mode, Equation (109) gives to

second order:

2 21A1 a. + 2 -2
= K2 a *6(k.+k -2k o )

n

exp(i(O i+$ n-2 o)t ] . (110)

This results in a set of coupled equations between a.1

and an, where ki + k =2k:

-i i  2 2iI2a. + 2i2a n e 2 iat

n n•= 2!A!2an* + 2A* 2a. e-2i et,(1)

where 2a n + - 2o is a function of k and k.. The

coupled equations can be more simply written in terms of

the functions c= aiA*exp(-iat) and c2 = an*Aexp(iat):
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-ic2 = (2j 2-21A12c
1 (2 c 1 +2 2

2 2ilI 2 c (
ic (2 a)c + 2 (112)

C2 =2 ' 1

If we assume that cI and c2 have the time behavior

exp(-iwt), then we find the dispersion relation:

2 4 IA12 + 2  . (113)

An exponentially growing solution is obtained when

e < 4IA 2. This describes the modulational instability

(Nishikawa, 1976). The maximum growth rate is given by

= 21M2  (114)

Collapse Theory, o(A
3)

The third order terms in the wave interaction give

iai = AA 26(ki+k n-k s-k M)

m n s

m#n

exp[i( i + n- -6m )t]. (115)

If we consider (s,m) the "initial state," and (a,n) the

"final state" when i = b, there are two allowed transi-

tions which preserve wavenumber matching (see Table 6).

The rate of change of ab is given by
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TABLE 6

WAVENUMBER MATCHED CONDITIONS

Initial Final f- Degeneracy

2,5 b,4 4A2  4

2,2 b,5 2A2 2



149

-ia = IAI2 A(4ei 4 A2 t + 2 e i 2 At) ( 1116)

This can be integrated to solve for ab. The modulus

squared of the amplitude is

J,2 1A16 r32 (sin2A2t ] (sinA2t)]

-ab L [ 2 + 4 2 (117)

This formula is similar to Fermi's golden rule for quantum

mechanical transitions in perturbed systems (Leighton,

1959, or Bahm, 1951). By analogy, lab 12 is the probabil-

ity that the system will be found in state b after time t,

AJAI2 is the matrix element for a transition froman ini-

tial state i to the final state f, and f - i is the

difference in energy between the final and initial states.

As in quantum mechanics, only "transitions" for which the

phase difference f i is small will occur. This has

interesting implications for the mode a, which is located

perpendicular to the magnetic field relative to the pump,

because its phase contains an additional magnetic term

which will cause a larger mismatch in - i" The

calculation for Iaat 2 gives

1A16 ~32rsi2 (A2 + 2 )t+ [sin2  2-2
aa12 = A_6 32_ 2 (A2+(2)) 4 stl
aa L2A2+ 2 ) + (A2+Q )

(118)

The new phase term in the equation can explain the

inhibition of collapse across the magnetic field that we

observed in the numerical simulations.
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The theory also describes other features of the

collapse well, such as the time scale, and the fact

that collapse occurs as a "broadening" in k-space and is

independent of the initial background noise.

We can compare this theory with a numerical example

(Goldman, Weatherall, and Nicholson, 1980) for which the

grid spacing A was 0.00125 kDe, the central wavenumber,

k° = 0.01 kDe' and the magnetic field wce = 0.1 Wpe. In

dimensionless units,

A2 = 0.2xi0-2 , 2 = 4.8x0 - 2  (119)

The initial amplitude for each pump mode was

A = 0.03 . (120)

In this case there were 39 pump modes, so the total

amplitude was A = 0.185, corresponding to a pump strength

W = 3x10 . According to the above discussion, we can

expect the time behavior of a and ab to be given by

I (A2+i2 )

labI ~ liA 3 lsinA2t(

jab I l32 •(121)

In Table 7, we show that the magnetic field has an

important effect in inhibiting transitions perpendicular

to the field. At T = 30, when collapse is observed to

begin when there is no maqnetic field, jabI has reached

L1
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TABLE 7

EFFECT OF FREQUENCY MISMATtH ON AMPLITUDE

GROWTH OF COLLAPSE MODES

T siAtsin(2

10 10 10

20 20 17

30 30 21

40 40 20

50 50 14

1000 625 12
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significant amplitude compared with the pump modes.

However, in the magnetized case, the collapse transverse

to the field cannot sustain itself beyond this time. We

can interpret this to mean that the nonlinear interaction

is not strong enough to drive this higher energy state.

If similar interactions among the pump modes cause the

waves to populate the lowest energy modes (near the k -
z

axis), then we can deduce that not only will collapse be

inhibited transverse to the field, but that H B will

decrease with time as well. This, according to the virial

theorem, will slow down collapse.

Now we must see when the above treatment of four-

wave interactions, which ignores interactions of o(A2)

is consistent. The third order process can proceed

vigorously as long as

2 t
<< 1 . (122)

This means that the argument of sin is small, and the

amplitude will be steadily increasing with time;

a - iAI 3t. In this case, the amplitude, a, will be the

order of the pump amplitude within times

t 1/I A1j2 (123)

This time interval allows only one e-folding for the

modulational instability, so these unstable modes will

still be near the background level. Therefore the
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collapse will occur sooner than the modulational

instability as long as the time is short enough that A2t

is still small. This requires

A 12 >> A2. (124)

If we interpret A as the total pump amplitude and A as

the bandwidth of the pump, then, in physical units, this

inequality gives

W > 12 2 (125)2
kDe

This is approximately the collapse threshold condition

given by the virial theorem (Goldman and Nicholson,

1979).

Summary

In numerical simulations of collapse, we have

identified two effects due to the magnetic field: a

change in shape of the collapsing wavepacket and a slowing

in the collapse rate. These effects seem to be related.

The virial theorem shows that the rate of collapse is

slowed because of a decrease in magnetic energy, HB,

which is brought about by a decrease in amplitude of

perpendicular wavenumbers.

The explanation for the decrease in k is suggestedI
by a perturbation theory which shows that higher order

wave interactions are inhibited between waves when the

.-. -PAW
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frequency mismatch is large relative to the rate of

nonlinear amplitude growth. By analogy to quantum

mechanics, we interpret this to mean that the probability

of a transition to various wave states becomes small if

the energy difference between these states and the

initial state is larger than the interaction energy.

The magnetic energy of a state (analogous to the wave

dispersion) is proportional to Q2 sin 2e, and increases for

larger angles 0 between the wave vector and the magnetic

field. Therefore, the lower energy states will corres-

pond to waves with smaller k . When the magnetic energy

is large compared with the interaction energy wave tran-

sitions will favor these lower energy states. This will

result in a net decrease of k . Thus, H B will become

smaller, and magnetic effects will become evident.

When our theory is applied to growing beam problems,

the slowdown results inanovershoot of the beam saturation

levels and extra electrostatic energy is introduced into

the system. In the Type III problem, we find that this

effect increases wave energy by a factor of two in two-

dimensional calculations. At 1/2 A.U., a magnetic field

strength of wce = 0.01 Wpe does not seem to produce a

significant overshoot, but does alter the geometry of

the collapsing wavepacket. However, w ce = 0.05 Wpe seems

to be a very strong magnetic field for wave energy levels

near 2"10-5



CHAPTER VI

CONCLUSION

What can this work tell us about the magnitude of

the magnetic field needed to affect nonlinear Langmuir

wave processes?

For parametric instability, we found that the

magnetic field caused a change in the wave vectors of

unstable waves. This shift enables the waves to maintain

frequency matching in the multiple wave interaction. In

this sense, the effect of the magnetic field is on the

"geometry" of the instability. Such a shift is required

when the magnetic field introduces a significant change

in the frequency mismatch between the pump wave and the

unstable wave, or equivalently, when the magnetic dis-

persion is comparable with the thermal dispersion,

k
W -ce> k (126)

k Wpe k De

This effect does not reduce the growth rates of insta-

bilities, but only causes them to have smaller perpendic-

ular wavenumbers. I
i 1.
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Instabilities which are nearly perpendicular to the

magnetic field [k1/k 1 << (m e/mi) are suppressed by

small magnetic fields. This is due to a change in the

nature of the low frequency electron motion for oscilla-

tions directly across the magnetic field when wce> kv

We observe two effects of the macnetic field on

collapse. The collapsing wavepackets become "pancakes"

with their largest dimensions transverse to the magnetic

field. The other effect is a slowing in the timescale

of the collapse.

Let us consider a two-dimensional Gaussian wave-

packet,

i V exp ikoz (127)

For this shape, the virial theorem gives us the following

condition for collapse to be affected [see Eq. ( 99 )1

Ak1 2  k1 2
ce 2 + 2 2 (128)

A 0 pe kDe k De

This is not a very useful condition, because close to

collapse threshold, the right side of Eq. (128) will be

near zero. This implies that an infinitesimal magnetic

field can alter collapse. However, while this is

necessary, it is not a sufficient condition for magnetized

collapse. A sufficient condition (see Eq. (102)] is

discovered empirically to require

1 .
.. . , ., ...
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2 2
ce W (129)

3ko2 e2 24
0 p

This condition is consistent with, but not proven by, a

broadband perturbation theory. At collapse threshold,

we can write the condition for the magnetic field to

affect collapse as

3k 2
ce 2  (130)

pe ~ k2De

This assures that the magnetic dispersion in the wave-

packet exceeds the thermal dispersion. This condition

is independent of the packet width Ak

For Type III parameters at 0.5 A.U., k° = 0.01 kDe

and w = 0.01 W , so that the terms in Equation (130)ce pe

are roughly equal. Our numerical simulation with these

parameters showed some change due to the magnetic field.

The effects for a slightly stronger field, w ce = 0.05 Wper

were more dramatic. We conclude that magnetic effects

in Type III bursts are possible.

In all of the examples we have seen, the magnetic

field does not prevent the collapse of Langmuir waves.

Even in cases where the initial wavepacket does not it-

self collapse, wave interactions seem to eventually

create a pancake-shaped wavepacket which does.
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